1,969 research outputs found
Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft
The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed
OMCat: Catalogue of Serendipitous Sources Detected with the XMM-Newton Optical Monitor
The Optical Monitor Catalogue of serendipitous sources (OMCat) contains
entries for every source detected in the publicly available XMM-Newton Optical
Monitor (OM) images taken in either the imaging or ``fast'' modes. Since the OM
is coaligned and records data simultaneously with the X-ray telescopes on
XMM-Newton, it typically produces images in one or more near-UV/optical bands
for every pointing of the observatory. As of the beginning of 2006, the public
archive had covered roughly 0.5% of the sky in 2950 fields.
The OMCat is not dominated by sources previously undetected at other
wavelengths; the bulk of objects have optical counterparts. However, the OMCat
can be used to extend optical or X-ray spectral energy distributions for known
objects into the ultraviolet, to study at higher angular resolution objects
detected with GALEX, or to find high-Galactic-latitude objects of interest for
UV spectroscopy.Comment: 25 pages, 22 figures, submitted to PAS
Characterisation of spatial network-like patterns from junctions' geometry
We propose a new method for quantitative characterization of spatial
network-like patterns with loops, such as surface fracture patterns, leaf vein
networks and patterns of urban streets. Such patterns are not well
characterized by purely topological estimators: also patterns that both look
different and result from different morphogenetic processes can have similar
topology. A local geometric cue -the angles formed by the different branches at
junctions- can complement topological information and allow to quantify the
large scale spatial coherence of the pattern. For patterns that grow over time,
such as fracture lines on the surface of ceramics, the rank assigned by our
method to each individual segment of the pattern approximates the order of
appearance of that segment. We apply the method to various network-like
patterns and we find a continuous but sharp dichotomy between two classes of
spatial networks: hierarchical and homogeneous. The first class results from a
sequential growth process and presents large scale organization, the latter
presents local, but not global organization.Comment: version 2, 14 page
Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory
A theory of coupled ferro- and antiferromagnetic Heisenberg layers is
developed within the framework of many-body Green's function theory (GFT) that
allows non-collinear magnetic arrangements by introducing sublattice
structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM)
bilayer is investigated. We compare the results with those of bilayers with
purely ferromagnetic or antiferromagnetic couplings. In each case we also show
the corresponding results of mean field theory (MFT), in which magnon
excitations are completely neglected. There are significant differences between
GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the
critical temperature decreases with increasing interlayer coupling strength for
a simple cubic lattice, whereas the opposite is true for an fcc lattice as well
as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens.
Matter, missing fig.5 adde
A statistical mechanical description of metastable states and hysteresis in the 3D soft-spin random-field model at T=0
We present a formalism for computing the complexity of metastable states and
the zero-temperature magnetic hysteresis loop in the soft-spin random-field
model in finite dimensions. The complexity is obtained as the Legendre
transform of the free-energy associated to a certain action in replica space
and the hysteresis loop above the critical disorder is defined as the curve in
the field-magnetization plane where the complexity vanishes; the nonequilibrium
magnetization is therefore obtained without having to follow the dynamical
evolution. We use approximations borrowed from condensed-matter theory and
based on assumptions on the structure of the direct correlation functions (or
proper vertices), such as a local approximation for the self-energies, to
calculate the hysteresis loop in three dimensions, the correlation functions
along the loop, and the second moment of the avalanche-size distribution.Comment: 28 pages, 12 figure
Magnetic and structural quantum phase transitions in CeCu6-xAux are independent
The heavy-fermion compound CeCuAu has become a model system for
unconventional magnetic quantum criticality. For small Au concentrations , the compound undergoes a structural transition from
orthorhombic to monoclinic crystal symmetry at a temperature with
for . Antiferromagnetic order sets in
close to . To shed light on the interplay between quantum
critical magnetic and structural fluctuations we performed neutron-scattering
and thermodynamic measurements on samples with . The
resulting phase diagram shows that the antiferromagnetic and monoclinic phase
coexist in a tiny Au concentration range between and . The
application of hydrostatic and chemical pressure allows to clearly separate the
transitions from each other and to explore a possible effect of the structural
transition on the magnetic quantum critical behavior. Our measurements
demonstrate that at low temperatures the unconventional quantum criticality
exclusively arises from magnetic fluctuations and is not affected by the
monoclinic distortion.Comment: 5 pages, 3 figure
The X-ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44
We present the result of a Chandra ACIS observation of the pulsar PSR
B1853+01 and its associated pulsar wind nebula (PWN), embedded within the
supernova remnant W44. A hard band ACIS map cleanly distinguishes the PWN from
the thermal emission of W44. The nebula is extended in the north-south
direction, with an extent about half that of the radio emission. Morphological
differences between the X-ray and radio images are apparent. Spectral fitting
reveals a clear difference in spectral index between the hard emission from PSR
B1853+01 (Gamma ~ 1.4) and the extended nebula (Gamma ~ 2.2). The more accurate
values for the X-ray flux and spectral index are used refine estimates for PWN
parameters, including magnetic field strength, the average Lorentz factor,
gamma, of the particles in the wind, the magnetization parameter, sigma, and
the ratio k of electrons to other particles.Comment: 10 pages, 3 figures, accepted by Ap
Using Cerebrospinal Fluid Biomarker Testing to Target Treatment to Patients with Mild Cognitive Impairment: A Cost-Effectiveness Analysis
Objective Cerebrospinal fluid (CSF) biomarkers are shown to facilitate a risk identification of patients with mild cognitive impairment (MCI) into different risk levels of progression to Alzheimerâs disease (AD). Knowing a patientâs risk level provides an opportunity for earlier interventions, which could result in potential greater benefits. We assessed the cost effectiveness of the use of CSF biomarkers in MCI patients where the treatment decision was based on patientsâ risk level.
Methods We developed a state-transition model to project lifetime quality-adjusted life-years (QALYs) and costs for a cohort of 65-year-old MCI patients from a US societal perspective. We compared four test-and-treat strategies where the decision to treat was based on a patientâs risk level (low, intermediate, high) of progressing to AD with two strategies without testing, one where no patients were treated during the MCI phase and in the other all patients were treated. We performed deterministic and probabilistic sensitivity analyses to evaluate parameter uncertainty.
Results Testing and treating low-risk MCI patients was the most cost-effective strategy with an incremental cost-effectiveness ratio (ICER) of US18,900 and US$50,100 per QALY, respectively.
Conclusion Based on the best available evidence regarding the treatment effectiveness for MCI, this study suggests the potential value of performing CSF biomarker testing for early targeted treatments among MCI patients with a narrow range for the ICER
An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere
We present an analysis of the X-ray spectrum of the Local Bubble, obtained by
simultaneously analyzing spectra from two XMM-Newton pointings on and off an
absorbing filament in the Southern galactic hemisphere (b ~ -45 deg). We use
the difference in the Galactic column density in these two directions to deduce
the contributions of the unabsorbed foreground emission due to the Local
Bubble, and the absorbed emission from the Galactic halo and the extragalactic
background. We find the Local Bubble emission is consistent with emission from
a plasma in collisional ionization equilibrium with a temperature and an emission measure of 0.018 cm^{-6} pc. Our
measured temperature is in good agreement with values obtained from ROSAT
All-Sky Survey data, but is lower than that measured by other recent XMM-Newton
observations of the Local Bubble, which find
(although for some of these observations it is possible that the foreground
emission is contaminated by non-Local Bubble emission from Loop I). The higher
temperature observed towards other directions is inconsistent with our data,
when combined with a FUSE measurement of the Galactic halo O VI intensity. This
therefore suggests that the Local Bubble is thermally anisotropic.
Our data are unable to rule out a non-equilibrium model in which the plasma
is underionized. However, an overionized recombining plasma model, while
observationally acceptable for certain densities and temperatures, generally
gives an implausibly young age for the Local Bubble (\la 6 \times 10^5 yr).Comment: Accepted for publication in the Astrophysical Journal. 16 pages, 9
figure
Destabilizing effects of visual environment motions simulating eye movements or head movements
In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness
- âŠ