234 research outputs found

    HST observations of the blue compact dwarf SBS 0335-052: a probable young galaxy

    Get PDF
    We present HST WFPC2 V and I images and GHRS UV spectrophotometry of the spectral regions around Lyalpha_alpha and OI 1302 of the extremely metal-deficient (Z~Zsun/41) blue compact dwarf (BCD) galaxy SBS 0335-052. All the star formation in the BCD occurs in six super-star clusters (SSC) with ages =< 3-4 Myr. Dust is clearly present and mixed spatially with the SSCs. There is a supershell of radius ~380 pc, delineating a large supernova cavity. The instantaneous star formation rate is ~0.4 Msun yr^-1. Strong narrow Lyα\alpha emission is not observed. Rather there is low intensity broad (FWZI = 20 A) Lyα\alpha emission superposed on even broader Lyα\alpha absorption by the HI envelope. This broad low-intensity emission is probably caused by resonant scattering of Lyα\alpha photons. The BCD appears to be a young galaxy, undergoing its very first burst of star formation. This conclusion is based on the following evidence: 1) the underlying extended low-surface-brightness component is very irregular and filamentary, suggesting that a significant part of the emission comes from ionized gas; 2) it has very blue colors (-0.34 =< (V-I)0_0 =< 0.16), consistent with gaseous emission colors; 3) the OI 1302 line is not detected in absorption in the GHRS spectrum, setting an upper limit for N(O)/N(H) in the HI envelope of the BCD of more than 3000 times smaller than the value in Orion.Comment: 20 pages and 6 Postscript figures. Submitted to Astrophysical Journa

    Close pairs of galaxies with different activity levels

    Full text link
    We selected and studied 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies to investigate the dependence of galaxies' integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Projected radial separation Dp and perturbation level P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually righter than their neighbors. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 4 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1310.024

    Close neighbors of Markarian galaxies. II. Statistics and discussions

    Full text link
    According to the database from the first paper, we select 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies. We study the dependence of galaxies integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Following main results were obtained: projected radial separation Dp between galaxies correlates with the perturbation level P of the pairs. Both parameters do not correlate with line-of-sight velocity difference dV of galaxies. Dp and P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually brighter than their neighbors in average by 0.9 mag. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 13 pages, 8 figures, 2 table

    A Bayesian Estimate of the Primordial Helium Abundance

    Get PDF
    We introduce a new statistical method to estimate the primordial helium abundance, Y_p from observed abundances in a sample of galaxies which have experienced stellar helium enrichment. Rather than using linear regression on metal abundance we construct a likelihood function using a Bayesian prior, where the key assumption is that the true helium abundance must always exceed the primordial value. Using a sample of measurements compiled from the literature we find estimates of Y_p between 0.221 and 0.236, depending on the specific subsample and prior adopted, consistent with previous estimates either from a linear extrapolation of the helium abundance with respect to metallicity, or from the helium abundance of the lowest metallicity HII region, I Zw 18. We also find an upper limit which is insensitive to the specific subsample or prior, and estimate a model-independent bound Y_p < 0.243 at 95% confidence, favoring a low cosmic baryon density and a high primordial deuterium abundance. The main uncertainty is not the model of stellar enrichment but possible common systematic biases in the estimate of Y in each individual HII region.Comment: 14 pages, latex, 3 ps figure

    Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies

    Full text link
    We use spectroscopic observations of a sample of 82 HII regions in 76 blue compact galaxies to determine the primordial helium abundance Yp and the slope dY/dZ from the Y-O/H linear regression. To improve the accuracy of the dY/dZ measurement, we have included new spectrophotometric observations of 33 HII regions which span a large metallicity range, with oxygen abundance 12+log(O/H) varying between 7.43 and 8.30 (Zsun/30<Z<Zsun/4). For a subsample of 7 HII regions, we derive the He mass fraction taking into account known systematic effects, including collisional and fluorescent enhancements of HeI emission lines, collisional excitation of hydrogen emission, underlying stellar HeI absorption and the difference between the temperatures Te(HeII) in the He^+ zone and Te(OIII) derived from the collisionally excited [OIII] lines. We find that the net result of all the systematic effects combined is small, changing the He mass fraction by less than 0.6%. By extrapolating the Y vs. O/H linear regression to O/H=0 for 7 HII regions of this subsample, we obtain Yp=0.2421+/-0.0021 and dY/dO=5.7+/-1.8, which corresponds to dY/dZ=3.7+/-1.2, assuming the oxygen mass fraction to be O=0.66Z. In the framework of the standard Big Bang nucleosynthesis theory, this Yp corresponds to Omega_b h^2 = 0.012^+0.003_-0.002, where h is the Hubble constant in units of 100 km/s/Mpc. This is smaller at the 2sigma level than the value obtained from recent deuterium abundance and microwave background radiation measurements. The linear regression slope dY/dO=4.3+/-0.7 (corresponding to dY/dZ=2.8+/-0.5) for the whole sample of 82 HII regions is similar to that derived for the subsample of 7 HII regions, although it has a considerably smaller uncertainty.Comment: 53 pages, 3 Postscript figures, accepted for publication in the Astrophysical Journa

    Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer observations of the star-forming galaxy Mrk 54 at z = 0.0448. The Lyman continuum radiation is not detected above the HI absorption edge in our Galaxy. An upper limit is evaluated by comparison with the background measured in regions of the detector adjacent to the observed spectrum. A spectral window of 16 A, reasonably free of additional HI Lyman series line absorption is used. No correction is needed for molecular hydrogen absorption in our Galaxy but a foreground extinction of 0.29 mag is accounted for. An upper limit of 6.15 10^{-16} erg/cm^2/s/A is obtained for the flux at ~ 900 A in the rest frame of Mrk 54. By comparison with the number of ionizing photons derived from the H-alpha flux, this limit translates into an upper limit of f_esc < 0.062 for the fraction of Lyman continuum photons that escape the galaxy without being absorbed by interstellar material. This limit compares with the limits obtained in three other nearby galaxies and is compatible with the escape fractions predicted by models. The upper limits obtained in nearby galaxies contrasts with the detection of Lyman continuum flux in the composite spectrum of Lyman-break galaxies at z ~ 3.4. The difficulties and implications of a comparison are discussed.Comment: 9 pages, 3 figures, accepted for publication in A&A include aa.cls v5.0

    The Star Formation History of IZw18

    Get PDF
    The star formation history in IZw18 has been inferred from HST/WFPC2 archival data. This is done by comparing the derived V, B-V and V, V-I color-magnitude diagrams and luminosity functions with synthetic ones, based on various sets of stellar evolutionary tracks. At a distance of 10 Mpc, the stars resolved in the field of IZw18 allow for a lookback time up to 1 Gyr. We find that the main body is not experiencing its first episode of star formation. Instead, it has been forming stars over the last 0.5-1 Gyr, at a rate of ~ 1-2 * 10**(-2) Msol per year per kpc**2. A more intense activity of 6-16 * 10**(-2) Msol per year per kpc**2 has taken place between 15 and 20 Myr ago. For the secondary body, the lookback time is 0.2 Gyr at most and the uncertainty is much higher, due to the shallower diagrams and the small number of resolved stars. The derived range of star formation rate is 3-10 * 10**(-3) Msol per year per kpc**2. The IMF providing the best fit to the observed stellar populations in the main body has a slope 1.5, much flatter than in any similar galaxy analyzed with the same method. In the secondary body, it is peaked at 2.2, closer to Salpeter's slope (2.35).Comment: 70 pages including 18 figures, to be published in The Astronomical Journa

    The Rest-Frame Optical Properties of z~3 Galaxies

    Get PDF
    We present the results of a near-infrared imaging survey of z~3 Lyman Break Galaxies (LBGs). The survey covers a total of 30 arcmin^2 and includes 118 photometrically selected LBGs with K_s band measurements, 63 of which also have J band measurements, and 81 of which have spectroscopic redshifts. Using the distribution of optical {\cal R} magnitudes from previous work and {\cal R}-K_s colors for this sub-sample, we compute the rest-frame optical luminosity function of LBGs. At the brightest magnitudes, where it is fairly well constrained, this luminosity function strikingly exceeds locally determined optical luminosity functions. The V-band luminosity density of only the observed bright end of the z~3 LBG luminosity function already approaches that of all stars in the local universe. For the 81 galaxies with measured redshifts, we investigate the range of LBG stellar populations implied by the photometry which generally spans the range 900--5500 AA in the rest-frame. While there are only weak constraints on the parameters for most of the individual galaxies, there are strong trends in the sample as a whole. A unified scenario which accounts for the observed trends in bright LBGs is one in which a relatively short period of very rapid star-formation (hundreds of M_sun/yr) lasts for roughly 50--100 Myr, after which both the extinction and star-formation rate are considerably reduced and stars are formed at a more quiescent, but still rapid, rate for at least a few hundred Myr. In our sample, a considerable fraction (~20%) of the LBGs have best-fit star-formation ages ~> 1 Gyr, implied stellar masses of ~> 10^10 M_sun, and are still forming stars at \~30 M_sun/yr.Comment: 61 pages including 19 figures. Accepted for publication in Ap

    POX 186: A Dwarf Galaxy in the Process of Formation?

    Full text link
    We present deep U, V and I band images of the "ultracompact" blue dwarf galaxy POX 186 obtained with the Planetary Camera 2 of the Hubble Space Telescope. We have also obtained a near-ultraviolet spectrum of the object with the Space Telescope Imaging Spectrograph, and combine this with a new ground-based optical spectrum. The images confirm the galaxy to be extremely small, with a maximum extent of only 300 pc, a luminosity ~ 10^-4 L*, and an estimated mass ~ 10^7 M(sun). Its morphology is highly asymmetric, with a tail of material on its western side that may be tidal in origin. The U-band image shows this tail to be part of a stream of material in which stars have recently formed. Most of the star formation in the galaxy is however concentrated in a central, compact (d ~ 10 - 15 pc) star cluster. The outer regions of the galaxy are significantly redder than the cluster, with V - I colors consistent with a population dominated by K and M stars. While these results rule out earlier speculation that POX 186 is a protogalaxy, its morphology, mass and active star formation suggest that it represents a recent (within ~ 10^8 yr) collision between two clumps of stars of sub-galactic size (~ 100 pc). POX 186 may thus be a very small dwarf galaxy that, dynamically speaking, is still in the process of formation. This interpretation is supported by the fact that it resides in a void, so its morphology cannot be explained as the result of an encounter with a more massive galaxy. Clumps of stars this small may represent the building blocks required by hierarchical models of galaxy formation, and these results also support the recent "downsizing" picture of galaxy formation in which the least massive objects are the last to form.Comment: accepted for publication in ApJ; 23 pages, 5 figure
    • 

    corecore