637 research outputs found

    LIGO’s quantum response to squeezed states

    Get PDF
    Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the Universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector’s quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing’s simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and—for the first time—give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    A Horizon Study for Cosmic Explorer: Science, Observatories, and Community

    Get PDF
    Gravitational-wave astronomy has revolutionized humanity's view of the universe. Investment in the field has rewarded the scientific community with the first direct detection of a binary black hole merger and the multimessenger observation of a neutron-star merger. Each of these was a watershed moment in astronomy, made possible because gravitational waves reveal the cosmos in a way that no other probe can. Since the first detection of gravitational waves in 2015, the National Science Foundation's LIGO and its partner observatory, the European Union's Virgo, have detected over fifty binary black hole mergers and a second neutron star merger -- a rate of discovery that has amazed even the most optimistic scientists.This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push the gravitational-wave astronomy towards the edge of the observable universe (z100z \sim 100). This Horizon Study presents the science objective for Cosmic Explorer, and describes and evaluates its design concepts for. Cosmic Explorer will continue the United States' leadership in gravitational-wave astronomy in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Measurement of the Associated γ+μ±\gamma + \mu^\pm Production Cross Section in ppˉp \bar p Collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV ppˉp \bar p collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process cgcγcg \to c\gamma, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of 29±9pb129\pm 9 pb^{-1} is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.Comment: 12 pages, 4 figures Added more detailed description of muon background estimat

    Search for charged Higgs decays of the top quark using hadronic tau decays

    Full text link
    We present the result of a search for charged Higgs decays of the top quark, produced in ppˉp\bar{p} collisions at s=\surd s = 1.8 TeV. When the charged Higgs is heavy and decays to a tau lepton, which subsequently decays hadronically, the resulting events have a unique signature: large missing transverse energy and the low-charged-multiplicity tau. Data collected in the period 1992-1993 at the Collider Detector at Fermilab, corresponding to 18.7±\pm0.7~pb1^{-1}, exclude new regions of combined top quark and charged Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp; submitted to Phys. Rev.

    Inclusive jet cross section in pˉp{\bar p p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The inclusive jet differential cross section has been measured for jet transverse energies, ETE_T, from 15 to 440 GeV, in the pseudorapidity region 0.1η\leq | \eta| \leq 0.7. The results are based on 19.5 pb1^{-1} of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200E_T>200 GeV is significantly higher than current predictions based on O(αs3\alpha_s^3) perturbative QCD calculations. Various possible explanations for the high-ETE_T excess are discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review Letter

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Point Absorber Limits To Future Gravitational-Wave Detectors

    Get PDF
    High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise
    corecore