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Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson
interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These
states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the
quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further
expand our gravitational view of the Universe. Further reducing quantum noise will require both lowering
decoherence from losses as well more sophisticated manipulations to counter the quantum back-action
from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed
light and the many components of km-scale interferometers. To this end, data from both LIGO
observatories in observing run three are expressed using frequency-dependent metrics to analyze each
detector’s quantum response to squeezed states. The response metrics are derived and used to concisely
describe physical mechanisms behind squeezing’s simultaneous interaction with transverse-mode selective
optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related
analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external
squeezing, and—for the first time—give physical descriptions of every feature so far observed in the
quantum noise of the LIGO detectors.

DOI: 10.1103/PhysRevD.104.062006

I. INTRODUCTION

The third observing run of the global gravitational wave
(GW) network has not only produced a plethora of varied
and unique astrophysics events [1,2], but also defined a
milestone in quantum metrology: the LIGO, VIRGO and
GEO600 observatories are now all reliably improving their
scientific output by incorporating squeezed quantum states
[3–6]. This marks the transition where optical squeezing, a
widely researched, emerging quantum technology, has
become an essential component producing new observa-
tional capability.
For Advanced LIGO, observing run three provides the

first peek into the future of quantum enhanced interfer-
ometry, revealing challenges and puzzles to be solved in the
pursuit of ever more squeezing for ever greater observa-
tional range. Studying quantum noise in the LIGO inter-
ferometers is not simple. The audio-band data from the
detectors contains background noise from many optical,
mechanical and thermal sources, which must be isolated
from the purely quantum contribution that responds to
squeezing. All the while, the interferometers incorporate
optical cavities, auxiliary optical fields, kg-scale suspended
optics, and radiation pressure forces. The background noise

and operational stability of the LIGO detectors is pro-
foundly improved in observing run three [7], enabling
new precision observations of the interactions between
squeezed states and the complex optomechanical detectors.
Quantum radiation pressure noise (QRPN) is the most

prominent new observation from squeezing [8,9]. QRPN
results from the coupling of photon momentum from the
amplitude quadrature of the light into the phase quadrature,
as radiation force fluctuation integrates into mirror displace-
ment uncertainty. When vacuum states enter the interferom-
eter, rather than squeezed states, QRPN imposes the so-
called standard quantum limit (SQL) [10–13], bounding the
performance of GW interferometers. Because the QRPN
coupling between quadratures is coherent, squeezed states
allow the SQL to be surpassed [8,14]. Both surpassing the
SQL and increasing the observing range is possible by using
a frequency-dependent squeezing source implemented with
a quantum filter cavity [14–23]. LIGO is including such a
source in the next observing run as part of its “A+” upgrade
[16,20]. To best utilize its filter cavity squeezing source, the
frequency dependence of LIGO’s quantum response must be
precisely understood.
Degradations to squeezing from optical loss and “phase

noise” fluctuations of the squeezing angle are also promi-
nently observed in LIGO. Whereas QRPN’s correlations
cause frequency-dependent effects, loss and phase noise are*lee.mcculler@ligo.org
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typically described as causing frequency-independent,
broadband changes to the quantum noise spectrum. This
work analyzes the quantum response of both LIGO
interferometers to injected squeezed states, indicating that
QRPN and broadband degradations, taken independently,
are insufficient to fully describe the observed quantum
response to squeezing.
The first sections of this work expand the response and

degradation model of squeezing to examine and explain the
LIGO quantum noise data by decomposing it into indepen-
dent, frequency-dependent parameters. The latter sections
relate the parameter decomposition back to interferometer
models, to navigate how squeezing interacts with cavities that
have internal losses, transverse-mode selectivity, and radia-
tion pressure interactions. The spectra at LIGO are explained
using a set of broadly applicable analytical expressions,
without the need for elaborate and specific computer sim-
ulations. The analytical models elucidate the physical basis of
LIGO’s squeezed state degradations, prioritizing transverse-
mode quality using wavefront control of external relay optics
[24–26] to further improve quantum noise. This analysis also
demonstrates the use of squeezing as a diagnostic tool [27],
examining not only the cavities but also the radiation pressure
interaction. These diagnostics show further evidence of the
benefit of balanced homodyne detection [28], another
planned component of the “A+” upgrade. The description
of squeezing in this work expands the modeling of degra-
dations in filter cavities [23], explicitly defining an intrinsic,
nonstatistical, form of dephasing. Finally, the derivations of
the quantum response metrics in Sec. IV show how to better
utilize internal information inside interferometer simulations,
simplifying the analysis of squeezing degradations for current
and future gravitational wave detectors.

II. SQUEEZING RESPONSE METRICS

To introduce the frequency-dependent squeezingmetrics,
it is worthwhile to first describe themetrics used for standard
optical squeezing generated from an optical parametric
amplifier (OPA), omitting any interferometer. For optical
parametric amplifiers, the squeezing level is determined by
three parameters. The first is the normalized nonlinear gain,
y, which sets the squeezing level and scales from 0 for no
squeezing to 1 for maximal squeezing at the threshold of
amplifier oscillation. For LIGO, y is determined from a
calibration measurement of the parametric amplification
[29–34]. The second parameter is the optical efficiency η of
states from their generation in the cavity all the way to their
observation at readout. Losses that degrade squeezed states
are indicated by η < 1. Finally, there is the squeezing phase
angle, ϕ, which determines the optical field quadrature with
reduced noise and the quadrature with the noise increase
mandated by Heisenberg uncertainty, antisqueezing. By
correlating the optical quadratures, variations in ϕ contin-
uously rotate between squeezing and antisqueezing. These
parameters relate to the observable noise as

NðϕÞ¼
�
1−

4ηy
ð1þyÞ2

�
cos2ðϕÞþ

�
1þ 4ηy

ð1−yÞ2
�
sin2ðϕÞ:

ð1Þ

The noise, NðϕÞ, can be interpreted as the variance of a
single homodyne observation of a single squeezed state, but
for a continuous time series of measurements, N can be
considered as a power spectral density (PSD), relative to the
density of shot noise. Using relative noise units, N ¼ 1
corresponds to observing vacuum states rather than squeez-
ing.While the nonlinear gain parameter ymay be physically
measured and is common in experimental squeezing liter-
ature, theoretical work more commonly builds states from
the squeezing operator, parametrized by r, which constructs
an ideal, “pure” squeezed state that adjusts the noise power
by e�2r. State decoherence due to optical efficiency is then
incorporated as a separate, secondary process. This is
formally related to the previous expression using

NðϕÞ ¼ ηðe−2rcos2ðϕÞ þ eþ2rsin2ðϕÞÞ þ ð1 − ηÞ; ð2Þ

e−2r ¼ 1 −
4y

ð1þ yÞ2 ; eþ2r ¼ 1þ 4y
ð1 − yÞ2 : ð3Þ

In experiments, the squeezing angle drifts due to path length
fluctuations and pump noise in the amplifier, but is moni-
tored using additional coherent fields at shifted frequencies
and stabilized by feedback control. This stabilization is
imperfect, resulting in a rms phase noise, ϕ2

rms, that mixes
squeezing and antisqueezing. Using ϕ̂ to represent the
statistical distribution of the squeezing angle, and E½·� the
expectation operation, phase noise can be incorporated as a
tertiary process given the expectation values

ϕ2
rms ¼ E½sin2ðδϕ̂Þ�; ϕ ¼ E½ϕ̂�; δϕ̂ ¼ ϕ̂ − ϕ ð4Þ

The ensemble average of the noise, N̄, must also be taken
using the expectation operator to incorporate the distribution
of phase.

N̄ðϕÞ ¼ E½Nðϕþ δϕ̂Þ� ð5Þ

The expanded expression for the ensemble average noise
then includes the expectation values of the phase

N̄ðϕÞ¼ηð1−ϕ2
rmsÞðe−2rcos2ðϕÞþeþ2rsin2ðϕÞÞ

þηϕ2
rmsðeþ2rcos2ðϕÞþe−2rsin2ðϕÞÞþð1−ηÞ: ð6Þ

Again, the relative noise N̄ is computed as a single value
here, but represents a power spectral density that is exper-
imentally measured at many frequencies. These equations,
as they are typically used, represent a change to the quantum
noise that is constant across all measured frequencies.
Notably, the ϕ2

rms phase noise term, which caps at 1=2,
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enters as a weighting factor that averages the antisqueezing
noise increasewith squeezing noise reduction,while ηmixes
squeezing with standard vacuum.
Incorporating an interferometer such as LIGO requires

extending these equations to handle frequency-dependent
effects.Theequationsmust includetermstorepresentmultiple
sources of loss entering before, during, and after the interfer-
ometer,aswellas termsfor thefrequency-dependentscalingof
the quantum noise due to QRPN and the interferometer’s
suspended mechanics. The extension of the metrics is
described by the following equations and parameters:

NðΩÞ≡ ΓðΩÞ · ðηðΩÞSðΩÞ þ ΛIROðΩÞÞ; ð7Þ

SðΩÞ≡S−cos2ðϕþθðΩÞÞþSþsin2ðϕþθðΩÞÞ; ð8Þ

S� ≡ ð1 − Ξ0ðΩÞÞe�2r þ Ξ0ðΩÞe∓2r; ð9Þ

ΛIROðΩÞ≡ ð1−ηIÞηOηRþηOð1−ηRÞþð1−ηOÞ=Γ: ð10Þ

These metrics are composed of the following variables:
(i) NðΩÞ: The power spectrum of quantum noise in the

readout, relative to the vacuum power spectral
density, ℏω=2, of broadband shot noise.

(ii) ΓðΩÞ: The quantum noise gain of the interferometer
optomechanics. While NðΩÞ is relative shot noise,
QRPN causes interferometers without injected
squeezing to exceed shot noise at low frequencies,
resulting inΓ > 1. Foroptical systemswithΓ ≠ 1, the
system cannot be passive, and must apply internal
squeezing/antisqueezing to the optical fields.

(iii) e2r; e−2r: The “pure” injected squeezing and anti-
squeezing level, before including any degradations.
This level is computed for optical parametric am-
plifier squeezers using Eq. (3).

(iv) S−; Sþ: The minimum and maximum relative noise
change from squeezing at any squeezing angle,
ignoring losses.

(v) SðΩÞ: The potentially observable injected squeezing
level, before applying losses or noise gain.

(vi) ϕ: The frequency-independent squeezing angle
chosen between the source and readout. This is
usually stabilized with a copropagating coherent
control field and feedback system.

(vii) θðΩÞ: The squeezing angle rotation due to the
propagation through the intervening optical system.
In a GW interferometer, this can be due to a
combination of cavity dispersion and optomechan-
ical effects. Quantum filter cavities target this term to
create frequency-dependent squeeze rotation.

(viii) ηIðΩÞ, ηOðΩÞ, ηRðΩÞ: The individually budgeted
transmission efficiencies of the squeezed field at
input, reflection and output paths of the interferom-
eter. 1 − ηI;R;O indicates optical power lost in that
component.

(ix) ηðΩÞ: The collective transmission efficiency of the
squeezed field. This is usually the product of the
efficiencies in each path, η ¼ ηIηOηR, but can
deviate from this when Γ ≠ 1 and interferometer
losses affect both Γ and ηR.

(x) ΛIROðΩÞ: The total transmission loss over the
squeezing path that contaminates injected squeezed
states with standard vacuum. When Γ ≈ 1, then
ΛIRO ≈ 1 − η.

(xi) Ξ0ðΩÞ: This is a squeezing-level-dependent deco-
herence mechanism called dephasing. It incorpo-
rates both statistical ϕ2

rms phase fluctuations and the
fundamental degradation arises from optical losses
with unbalanced cavities, denoted ΞðΩÞ. It can
also arise from QRPN with structural or viscous
mechanical damping. Appendix B shows how to
incorporate fundamental dephasing ΞðΩÞ, standard
phase uncertainty, ϕ2

rms, and cavity tuning fluctua-
tions, θ2rmsðΩÞ, into Ξ0ðΩÞ to make a total effective
dephasing factor. When small, these factors sum to
approximate the effective total Ξ0

After the data analysis of the next section, these quantum
response metrics are derived in Sec. IV. These squeezing
metrics indicate three principle degradation mechanisms,
all frequency dependent. These are losses, where
ΛIROðΩÞ ≈ 1 − ηðΩÞ > 0; misphasing, from ϕþθðΩÞ≠0;
and dephasing, ΞðΩÞ > 0.
The interaction of squeezing with quantum radiation

pressure noise is described within these terms. Broadband
squeezing naively forces a trade-off between increased
measurement precision and increased quantum back-action.
When squeezing is applied in the phase quadrature, it results
in antisqueezing of the amplitude quadrature. The amplitude
quadrature then pushes the mirrors and increases QRPN;
thus, the process of reducing imprecision seemingly
increases back-action. In other terms, QRPN causes the
interferometer’s “effective” observed quadrature [35] to
transition from the phase quadrature at high frequencies
to the amplitude quadrature at low frequencies. In the
context of these metrics, the observation quadrature is
captured in the derivation of θðΩÞ. The associated back-
action trade-off can be considered amisphasing degradation,
allowing the SQL to be surpassed using the quantum
quadrature correlations introduced by varying the squeezing
angle [8]. Frequency-dependent squeezing, viewed as a
modification of the squeezing source, can be considered
as making ϕðΩÞ frequency dependent, tracking θðΩÞ.
Alternatively, it can be viewed as a modification of the
interferometer, tomaintain θðΩÞ ≈ 0.While a quantum filter
cavity is not explicitly treated in this work, the derivations of
Sec. IV are set up to be able to include a filter cavity as a
modification to the input path of the interferometer.
While misphasing can be compensated using quantum

filter cavities, the other two degradations are fundamental.
For squeezed states, they establish the noise limit:
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NðΩÞ≥Γ · ð2η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ0ð1−Ξ0Þ

p
þΛIROÞ; e−2r¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ξ0ðΩÞ

p
:

ð11Þ

Setting the squeezing level as
ffiffiffiffiffi
Ξ0p

solves for the optimal
noisegiven the dephasing. Squeezing is then further degraded
from losses, producing the noise limit. Notably, the optimal
squeezing is generally frequency dependent due to ΞðΩÞ,
indicating that for typical broadband squeezing sources, this
bound cannot always be saturated at all frequencies.

A. Ideal interferometer response

Before analyzing quantum noise data to utilize the
squeezing metrics of Eqs. (7)–(10), it is worthwhile to
first review the quantum noise features expected in the
LIGO detector noise spectra [14,36], under ideal conditions
and without accounting for realistic effects present in the
interferometer. The derivations later will then extend how
the well-established equations below generalize to incor-
porate increasingly complex interferometer effects, both by
extracting features from matrix-valued simulation models,
as well as by extracting features from scalar boundary-
value equations for cavities. The interferometer and its
cavity structure is depicted in Fig. 1.
Other than shot noise imprecision, the dominant quantum

effect in gravitational wave interferometers arises from
radiation pressure noise. In an ideal, on-resonance interfer-
ometer, this noise is characterized by the interaction strength
KðΩÞ that correlates amplitude fluctuations entering the
interferometer to phase fluctuations that are detected along
with thesignal.K isgenerated fromthecirculatingarmpower
PA creating force noise that drives the mechanical suscep-
tibility χðΩÞ. The susceptibility relates force to displacement
on each of the four identicalmirrors ofmassm in theGWarm
cavities. The QRPN effect is enhanced by optical cavity
gain gðΩÞ which resonantly enhances quantum fields enter-
ing the arm cavities and signal fields leaving them,

KðΩÞ ¼ 16k
PA

c
g2ðΩÞχðΩÞ; gðΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γAc=La

p
γA þ iΩ

: ð12Þ

Here,k is thewavenumber of the interferometer laser andc is
the speed of light. The arm cavity gain gðΩÞ is a function of
the signal bandwidth γA, derived later, and the interferometer
arm lengthLa. Unlike in past works, this expression ofKðΩÞ
here is kept complex, holding the phase shift that arises from
the interferometer cavity transfer function. The phase of
KðΩÞ is useful for later generalizations. KðΩÞ adds the
amplitude quadrature noise power to the phase quadrature
fluctuations directly reflected from the interferometer, set-
ting the noise gain ΓðΩÞ

ΓðΩÞ ¼ 1þ jKðΩÞj2; θðΩÞ ¼ arctanðjKðΩÞjÞ: ð13Þ

The relationship between ΓðΩÞ and θðΩÞ from KðΩÞ is
stated above as reference, but it will more appropriately
handle the complexKðΩÞwhen it is derived later. The value
jKðΩsqlÞj≡ 1 defines the crossover frequencyΩsql between
noise contributions from shot-noise imprecision andQRPN,
corresponding to ΓðΩsqlÞ ¼ 2 and θðΩsqlÞ ¼ 45°. For the
χðΩÞ susceptibility of a free test mass, the factor KðΩÞ can
be expressed using only frequency scales,

KðΩÞ¼−
Ω2

sql

Ω2

�
γA

γAþ iΩ

�
2

; given χðΩÞ≡ −1
mΩ2

; ð14Þ

Ω2
sql ¼

γ2A
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
16kPA

mLaγ
3
A

þ 1

s
− 1

!
≈
16kPA

mLaγA
: ð15Þ

Frequency-independent losses are applied to squeezing
before and after the interferometer using η ¼ ηIηRηO where
ηI < 1, ηO < 1. The ideal interferometer assumption of the
formulas above enforces ηR ¼ 1. Phase noise in squeezing is
included in this ideal interferometer case using Ξ0 ¼ ϕ2

rms.
The above expressions relate the optical noise NðΩÞ of

Eq. (7) to past models of the quantum strain sensitivity of
GW interferometers [14,37,38]. Since NðΩÞ is relative to
shot noise, it must then be converted to strain or displace-
ment using the optical cavity gain gðΩÞ, by how it affects
the GW signal through the calibration factor GðΩÞ. This
factorGðΩÞ relates strain modulations to optical field phase
modulations in units of optical power.

PSDstrainðΩÞ¼GðΩÞNðΩÞ; GðΩÞ¼ ℏc
ηOL2

a jgðΩÞj2kPA
:

ð16Þ

Together, these relations allow one to succinctly calculate
the effect of squeezing on the strain power spectrum in the
case of an ideal interferometer. These factors and the
calculations behind them will be revisited as nonidealities
are introduced.

III. EXPERIMENTAL ANALYSIS AND RESULTS

A goal of this paper is to use the squeezing response
metrics of Eqs. (7)–(10) to relate measurements of the
instrument’s noise spectrum to the parameters of the
squeezer system, namely its degradations due to loss
1 − η, radiation pressure from misphasing ϕþ θðΩÞ, and
dephasings Ξ0ðΩÞ. This section presents measurements
from the LIGO interferometers that are best described
using the established frequency-dependent metrics. The
measurements then motivate the later content of the paper,
where simplified interferometer models are constructed to
describe this data in the context of the squeezing metrics.
This section refers to and relates to the later sections to
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provide early experimental motivation for the discussions
that follow. The reader may prefer instead to skip this
section and first understand the models before returning to
see their application to experimental data.
The main complexity in analyzing the LIGO data is

that the detectors have additional classical noises, prevent-
ing a direct measurement of NðΩÞ. The many frequency-
dependent squeezing parameters must also be appropriately

disentangled. To address both of these issues, the unknown
squeezing parameters are fit simultaneously across multiple
squeezing measurements. The classical noise contribution
is determined by taking a reference data set where the
squeezer is disabled, such that SðΩÞ ¼ 1, and then sub-
tracting it from the data sets where squeezing is injected.
Representative strain spectra from the LIGO Livingston

(LLO) and LIGO Hanford (LHO) observatory data sets are
plotted in Fig. 2. The Livingston data set is also reported in
Ref. [8], which details the assumptions and error propa-
gation for the classical noise components and calibration.
Only statistical uncertainty is considered in this analysis, in
order to propagate error to the parameter fits. The strain
spectra of Fig. 2 include a reference data set where the
squeezer is disabled, shown in black and at the highest
frequency resolution. Additionally, the shot noise (N ¼ 1)
is plotted in orange, indicating the calibration

ffiffiffiffiffiffiffiffiffiffiffi
GðΩÞp

of
Eq. (16). The gray subtraction curve depicts the total
classical noise contribution summed with the radiation
pressure noise GðΩÞK2ðΩÞ. The gray data set can equiv-
alently be computed using a cross correlation of the two
physical photodetectors at the interferometer readout [39].
The equivalence of subtraction and cross correlation is used
to precisely experimentally determine the shot-noise scale
GðΩÞ from the displacement-calibrated data.

A. Analysis

Each squeezing measurement, indexed by k, is indicated
by Msqz;kðΩiÞ, with a value at each frequency indexed by i.
The reference data set is denoted MrefðΩiÞ. The two are
subtracted to cancel the stationary classical noise compo-
nent. The calibration GðΩÞ is removed to result in the
differential quantum noise measurement DkðΩiÞ,

DkðΩiÞ≡Msqz;kðΩiÞ −MrefðΩiÞ
GðΩiÞ

: ð17Þ

For these data sets, the squeezing level e�2r, is held
constant and independently measured using the nonlinear
gain technique [34] to derive y of Eq. (3). Each differential
data DkðΩiÞ is taken at some squeezing angle ϕk, which is
either fit (LLO) or derived from independent measurements
(LHO). The parameters ηi and squeezing rotation θi are
independent at every frequency Ωi but fit simultaneously.
All ϕk are also fit simultaneously across all data sets.
Nonlinear least squares fitting was performed using the
Nelder-Mead simplex algorithm [40] implemented in SciPy
[41]. The residual minimized by least squares fitting is

R ¼
XN
i¼0
k¼0

�
DkðΩiÞ − D̄kðΩiÞ

ΔDkðΩiÞ
�

2

: ð18Þ

The measurement statistical uncertainty ΔD, dominated by
the statistical uncertainty in power-spectrum estimation,was

FIG. 1. This simplified diagram of the interferometer layout
shows the propagation of the source laser (solid red) and
squeezed beam (dashed burgundy). At (a), the squeezed beam
is sourced from a parametric amplifier cavity and circulated to the
interferometer with a Faraday isolator. At (b), the squeezing field
reflects from the interferometer. Depending on the frequency and
transverse beam profile, the states partially transit the interfer-
ometer cavities, but also partially reflect promptly. The squeezing
that enters the interferometer symmetrically is beam split inside
the signal recycling cavity, coherently resonates in both arms, and
recombines again at the beam splitter, effectively experiencing
the two branches as a single linear coupled cavity. Injected at a
different port, the red laser field carries substantial laser power
and is symmetrically split to pump the arm cavities. Differential
length signals are sourced by modulating the circulating pump
field, creating a phase-quadrature field that resonates in the same
effective linear cavity as the squeezing. The signal is emitted at
(b), stacking with the squeezing that reflects at (b). The transverse
beam profile (mode) of the signal and squeezing is then selected
using the output mode cleaning cavity at (c). Ultimately, the
signal and noise are read as time series in photodetectors at (d).
This effect of coherent interference between prompt and cavity-
circulated squeezing from this sequence is formulated, measured,
and analyzed in the following sections.
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propagated through the data sets per Ref. [8]. D̄kðΩiÞ is the
model of the data that is a function of the fit parameters,
ηi; θi;ϕk aswell as independentlymeasured parameters such
as e−2r. Ξ0ðΩiÞ is not fit using this data since the squeezing
level e2r is not varied across the data sets. This is discussed
below. These fit parameters are propagated through the
squeezing metric functions to model this particular differ-
ential quantum noise measurement,

S̄kðΩiÞ≡ e−2rcos2ðϕk þ θiÞ þ eþ2rsin2ðϕk þ θiÞ; ð19Þ
D̄kðΩiÞ≡ NðΩiÞjS¼S̄kðΩiÞ − NðΩiÞjS¼1; ð20Þ

which simplifies to

D̄kðΩiÞ ¼ ðS̄kðΩiÞ − 1ÞηiΓðΩiÞ: ð21Þ

Notably, the individual efficiencies ηI; ηR; ηO cannot be
individually measured and only the “total” efficiency
ηðΩÞ is measurable using this differential method, where
the classical noise is subtracted using a reference data set
with squeezing disabled. Additionally, the optical efficiency
η can only be inferred given some knowledge or assumption

of ΓðΩÞ. In effect, the product ηΓ is the primary measurable
quantity, rather than its decomposition into separate η and Γ
terms; however, for the purposes of modeling, decomposing
the two is conceptually useful. Furthermore, to characterize
physical losses, the efficiency η or lossΛIRO ≈ 1 − η is easier
to plot and interpret than the product ηΓ.
For these reasons, the differential data DkðΩiÞ is further

processed, creating the measurement QkðΩiÞ with a form
similar to Eq. (2)

QkðΩiÞ≡ Dk

ΓðΩiÞ
þ 1 ≈ SkðΩiÞηi þ ð1 − ηiÞ þ ΔQ; ð22Þ

-yo496The LIGO squeezing data expressed in dB ofQkðΩiÞ
are plotted in the upper panels of Fig. 3. The data and error
bars are in discrete points, while the parameter fits to Qk
using ηi, θi andϕk are the solid lines between the data points.
The spectra in each set are calculated using the Welch
method, except using a median statistic at each frequency to
average all of the frames through the integration time. This
prevents biases due to instrumental glitches adding nonsta-
tionary classical noise. This technique is detailed in Ref. [8].

(a) (b)

FIG. 2. This figure plots the total quantum and classical noise measured in the LIGO detectors in displacement amplitude spectral
density units. The black trace plots a reference measurement of the total noise without injected squeezing at 0.25 Hz resolution over
1.5 hr integration for LLO and 1.1 hr for LHO. The orange shot-noise measurement shows the displacement calibration,

ffiffiffiffiffiffiffiffiffiffiffi
GðΩÞp

, in
amplitude density units. Subtracting the shot-noise level from the reference yields the gray data points, which have been rebinned using a
median statistic applied after the subtraction and with a logarithmic bin spacing. The subtraction primarily shows the classical noise but
also contains QRPN. Multiple measurements are taken at varied squeezing angles, with 5 of 12 plotted for Livingston (LLO) and 5 of 34
plotted for Hanford (LHO), using the same median rebinning method as the gray subtraction. The variation in the data error bars results
from the binning span of each data point, ΔF, and the measurement integration time,ΔT. The error of the measured spectra is relative to
the total noise and proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔTΔF

p
. The squeezing angle of −3.9° and 1.4° data sets at LLO used ∼1 Hr integration, and the

remainder used 15 min each. The squeezing angle 4.5° data set at LHO used ∼1 Hr integration, while all others use 2 minutes each. The
squeezing level e�2r is constant over all angles, but different between the two sites. This accounts for the difference in the yellow, ∼30°,
data set at each site.
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After computing QkðΩiÞ at full frequency resolution, the
data is further rebinned to have logarithmic spacing by
taking a median of the data points within the frequency
range of each bin. This rebinning greatly improves the
statistical uncertainty at high frequencies, where many

points are collected. At lower frequencies, the relative
error benefits less from binning; however, both the LLO
and the LHO data sets use a long integration time for
their reference measurement and at least one of the
squeezing angle measurements. Using the median removes

(a) (b)

FIG. 3. This figure shows the data of Fig. 2 processed as per Sec. III for each LIGO site, with 9 of 12 shown for LLO and 9 of 34 for
LHO. The processing subtracts away the classical noise determined from the unsqueezed reference data set. The top panels show the
relative noise change QkðΩiÞ of Eq. (22) computed using ΓkðΩiÞ from the exact interferometer model of Appendix E using the
parameters of Table I. The top panel includes dots with error bars for the processed data and lines for the best-fit QkðΩiÞ. The middle
panel shows the best-fit frequency-dependent loss as data points, with error bars propagated through the fit. For LLO, two sets of loss
data points are shown, corresponding to interferometer models with different readout angles ζ. The loss plots also show 1 − ηðΩÞ as
computed from the exact matrix model, along with a phenomenological fit against the model of Eq. (85) of Sec. VI. The
phenomenological fit assumes frequency-independent losses from the input and output squeezing path with a frequency-dependent
addition attributed to transverse mismatch. The bottom panels show the frequency-dependent fit to the observed squeezing angle θkðΩiÞ,
using the convention of θð2π · 3 kHzÞ ¼ 0. It also plots θðΩÞ as computed using the exact matrix model. For the LLO data, the ζ ¼ 0°
model is typically assumed for Michelson-like interferometers such as LIGO; however, the model at that readout angle implies losses at
low frequencies that are not favored by the ηðΩÞmodels explored in this paper. Alternatively, the ζ ≈ −13° model is consistent with both
the fitted losses and the fitted squeezing angles.
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narrow-band lines visible in the strain spectra of Fig. 2.
Fitting combines the few long-integration, low-error data
sets with many short-integration, high-error sets at many
variations of the operating parameters. The few low-error
data sets reduce the absolute uncertainty in the resulting fit
parameters, whereas the many variations reduce covarying
error that would otherwise result from modeling parameter
degeneracies.
The relative statistical error in each bin of the original

PSD MkðΩiÞ is approximately ðΔFΔTÞ−1=2 given the
integration time ΔT of 2 minutes to 1 hour and bin-width
ΔF of 0.25 Hz. This relative error is converted to absolute
error and propagated through the processing steps of
Eqs. (17)–(22). At low frequencies, the classical noise
contribution to each Mk is larger than the quantum noise.
Although it is subtracted away to create DkðΩiÞ, the
classical noise increases the absolute error, and, along with
less rebinning, results in the larger relative errors at low
frequency in Fig. 3. After fitting the squeezing parameters,
the Hessian of the reduced chi-square is computed from the
Jacobian of the fit residuals with respect to the parameters.
This Hessian represents the Fisher information, and the
diagonals of its inverse provide the variances indicated by
the plotted loss and angle parameter error bars.
For the LHO data, the fit parameters ϕk are determined

by mapping the demodulation angles of its coherent control
feedback system [3,42–44] back to the squeezing angle.
That mapping has three unknown parameters—an offset in
demodulation angle, an offset in squeezing angle, and a
nonlinear compression parameter—all of which are fit
simultaneously in all data sets. This ϕk mapping was not
performed on the LLO data, as some systematic errors in
the demodulation angle records bias the results. Despite
fitting more independent parameters, the longer integration
time of the LLO data gives it sufficiently low statistical
uncertainty at frequencies below Ωsql that the model and
parameter degeneracy between ϕk, θi and ηi is not an issue.

B. Results

The middle panels of Fig. 3 show the fits to ηi, though
plotted as loss 1 − ηi to represent ΛIRO. Both data sets
additionally include a red loss model curve fit, assembled
using the equations in Sec. V. The orange exact model
curves use Appendix E. The data and model curve fit shows
a variation in the efficiency, where losses increase from low
to high frequencies. This increase in loss can be attributed
either to losses within the signal recycling cavity of the
interferometer, or to a coherent effect resulting from
transverse Gaussian beam parameter mismatch between
the squeezer and interferometer cavities. At low frequen-
cies, the optical efficiency is similar between the two LIGO
sites, indicating that frequency-independent component of
the loss is consistent between the implementations at both
LIGO sites. The differing high-frequency losses can rea-
sonably be ascribed to variations in the optical beam

telescopes of the squeezing system and are analyzed
in Sec. VI.
The LLO middle panel of Fig. 3 shows two separate

inferred loss 1 − ηi data sets. These differ in their under-
lying model of ΓðΩiÞ. The following Sec. IV discusses how
variations in Γ arise and describes the local oscillator
angle ζ. The ζ ¼ 0 data reflects the standard, ideal radiation
pressure noise model of Eqs. (13)–(14). This model is
disfavored given the frequency dependency of ηðΩiÞ
derived using optical cavity models later in this paper.
The ζ ¼ −13° model presents an alternative that is com-
patible with models of the optical efficiency. The need for
this alternative indicates that squeezing metrics must
account for variations in interferometer noise gain Γ.
Physically, these variations arise from the readout angle
adjusting the prevalence of radiation pressureversus ponder-
omotive squeezing. The ζ ¼ −13° model results in a smaller
noise gain Γ at 40 Hz than does the ζ ¼ 0° model. Since the
lower Γ model is favored, this data set provides some,
moderate, evidence that LLO currently benefits from the
quantum correlations introduced by the mirrors near ΩSQL,
while experiencing lessened sensitivity elsewhere.
This data demonstrates that the readout angle has an

effect on the interferometer sensitivity and the optimal local
oscillator is not necessarily ζ ¼ 0 due to radiation pressure.
The quantum benefit of decreased Γ from the readout angle
ζ is a method to achieve sub-SQL performance that is an
alternative to injecting squeezing. Like squeezing, this
alternative method has a frequency-dependent enhance-
ment known as the “variational readout” technique [14,45],
which balances the sensitivity increase of lowering Γ
against the sensitivity decrease of the frequency-indepen-
dent ζ ≠ 0. For LLO, the reduced sensitivity from ζ ≠ 0
masquerades as a 5% loss of signal power, but does not
actually affect the η or ΛIRO contributions to the squeez-
ing level.
The bottom panels of Fig. 3 show the fits of θi of each

data set. The magnitude of e�2r provides a “lever arm” in
the variation of SkðΩiÞ that strongly constrains the ϕk þ θi
effective squeezing angle. These leveraged constraints
result in small error bars to the fitted θi. The LLO data
are plotted with two models of the θi based on the assumed
local oscillator angle ζ. The ζ ¼ 0° model follows the
standard radiation pressure model of Eq. (13) at low
frequencies and includes a filter-cavity type rotation around
the interferometer cavity bandwidth γ ≈ 2π · 450 Hz. This
rotation is modeled in Sec. VA. The ζ ¼ −13° model is
computed using the coupled cavity model of Appendix E
and internally includes a weak optical spring effect along
with the shifted readout angle ζ. Together, these effects
modify the effective squeezing angle θ away from Eq. (13)
at low frequencies, and agree well with the data set. This
agreement provides further evidence of the reduced radi-
ation pressure noise gain ΓðΩÞ in LLO that results from the
effective LO readout angle ζ. A nonzero readout angle ζ is
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reasonable to expect due to unequal optical losses in the
LIGO interferometer arm cavities. The arm mismatch
results in imperfect subtraction of the fringe-light ampli-
tude quadrature at the beam splitter, creating a static field
that adds to the phase-quadrature light created from the
Michelson offset and results in ζ ≠ 0. Past diagnostic
measurements concluded that some power in the readout
diodes must be in the amplitude quadrature, but until now
could not determine the sign.
Although the squeezing angle parameters ϕk and θi are

fit, the frequency-dependent dephasing parameter Ξi can-
not be reliably determined from these data sets given the
accuracy to which e�2r is measured. Additionally, the
squeezing level e�2r is not varied in this data, nor is it
sufficiently large to resolve an influence from ΞðΩÞ <
10−3. This

ffiffiffiffi
Ξ

p
≈ ϕrms is expected from independent mea-

surements of phase jitter that propagate through the
coherent control scheme of the squeezer system [3]. A
large source of optically induced Ξ is not expected as the
interferometer cavities are not sufficiently detuned.
Measurements of the squeezing system indicate ϕrms≲
30 mrad. Future LIGO measurements should include addi-
tional data sets that vary r along a third indexing axis j and
should increase the injected squeezing level e2r > 30 to
measure, or at least bound, Ξ and its frequency-independent
contribution ϕ2

rms. The model fits described above are
consistent with the data while assuming Ξ ¼ ϕ2

rms ≡ 0.

IV. DECOMPOSITION DERIVATION

The factors ηðΩÞ; θðΩÞ and ΞðΩÞ from Sec. II each
describe an independent way for squeezing to degrade.
ΓðΩÞ indicates how the quantum noise scales above or
below the shot-noise level from squeezing and from
quantum radiation pressure within the interferometer.
They represent a natural extension of standard squeezing
metrics that incorporates frequency dependence, and, as
scalar functions, they are simple to plot and to relate with
experimental measurements. This section delves into their
derivation by employing matrices in the two-photon for-
malism [46,47] to represent the operations of squeezing,
adding loss, shifting the squeezing phase, reflecting from
the interferometer, and final projection of the quantum state
into the interferometer readout. The derived formulas can
be used in frequency-domain simulation tools that compute
noise spectra using matrix methods, so that the quantum
response metrics can be provided in addition to opaquely
propagating squeezing to a simulation result of NðΩÞ.
Two-photon matrices are an established method to

represent transformations of the optical phase space of
Gaussian states in an input-output Heisenberg representa-
tion of the instrument [13]. They are concise yet rigorous
when measuring noise spectra from squeezed states using
the quantum measurement process of homodyne readout.
Section II of Ref. [48] provides a review of their usage in

the context of gravitational wave interferometers. Here,
two-photon matrices are indicated by double-struck-bold
lettering, and are given strictly in the amplitude/phase
quadrature basis.
Each matrix represents the transformation of the optical

phase space of a single optical “mode” as it propagates
through each physical element towards the readout. The
term “mode” refers to a basis vector in a linear decom-
position of the optical field in the plane transverse to the
propagation direction and can distinguish between the
optical field planes of multiple physical ports [49]. Each
plane is further decomposed into transverse spatial modes
using a Hermite or Laguerre-Gaussian basis. In this
decomposition, each optical mode is indexed by the
placeholder μ and acts as a continuous transmission
channel for optical quantum states. The phase-space trans-
formations of these continuous optical states are indexed by
time or, more conveniently, frequency. Optical losses and
mixing from transverse mismatch behave like beam-splitter
operations, serving to couple multiple input modes, gen-
erally carrying vacuum states, to the mode of the readout
where states are measured.
The mode of the injected squeezed states, and their

specific transformations during beam propagation, must be
distinguished from all of the lossy elements that couple in
vacuum states. The squeezed states experience a sequence
of transformations by the input elements, interferometer,
and output elements, denoted HIðΩÞ, HRðΩÞ, HOðΩÞ. This
sequence multiplies to formulate the total squeeze path
propagation H,

HðΩÞ ¼ HOHRHI: ð23Þ
Lossy optical paths mix the squeezed states with additional
standard vacuum states. These are collected into sets of
transformationmatrices corresponding to each individual loss
source,fTμg; seeFig. 4. The sets aregroupedby their location
along the squeezing path where the lossy element is incorpo-
rated. The beam-splitter-like operation that couples each loss
is given by a Λμ, indexed by its location and source along the
squeezing path. Loss transformations Λμ are generally fre-
quency independent. ΛR;i are an exception, as they occur
within the cavities of the interferometer and include some
cavity response. The vacuum states associated with each loss
then propagate along with the squeezed states and experience
the remaining transformations that act on squeezing,

T I;μðΩÞ ¼ HOHRΛI;μ; ð24Þ

TR;μðΩÞ ¼ HOΛR;μ; ð25Þ

TO;μðΩÞ ¼ ΛO;μ; ð26Þ

fTg ¼ fT I;μ; TR;μ; TO;μg: ð27Þ

L. MCCULLER et al. PHYS. REV. D 104, 062006 (2021)

062006-10



Together, all of the transformations of H and fTg define the
output states at the readoutof the interferometer in termsof the
input states entering through the squeezer and loss elements.
The two quadrature observables of the optical states are given
with the convention q̂ being the amplitude quadrature and p̂
being the phase, and they are indexed to distinguish their input
port and transverse mode,�

q̂outðΩÞ
p̂outðΩÞ

�
¼ H

�
q̂inðΩÞ
p̂inðΩÞ

�
þ
X

Tμ∈fTg
Tμ

�
q̂μðΩÞ
p̂μðΩÞ

�
: ð28Þ

The two-photon matrices H and Tμ must preserve commu-
tation relations, namely ½q̂out; p̂out� ¼ ½q̂μ; p̂μ� ¼ iℏ. In doing
so, the matrices ensure that losses within H couple ancillary
vacuum states that degrade squeezing.
The readout carries a continuous coherent optical field

known as the “local oscillator” and the output states are
read using homodyne readout. The phase of the local
oscillator, ζ, defines the observed quadrature, m̂, for the
homodyne measurement. Gravitational wave interferome-
ters typically use a “Michelson offset” [50–52] in the paths
adjacent to their beam splitter to operate slightly off of dark
fringe. This offset couples a small portion of their pump
carrier light to their output as the local oscillator field. This
is a form of homodyne readout that fixes ζ to measure in the
phase quadrature, defined here to be when ζ ¼ 0. Imperfect
interference at the beam splitter can couple some amplitude
quadrature and shift ζ away from 0. Balanced homodyne
readout is an alternative implementation proposed for
LIGO’s “A+” upgrade and will allow ζ to be freely chosen
[28]. Regardless of the implementation, the homodyne
observable is m̂,

m̂ ¼ v⃗†
�
q̂outðΩÞ
p̂outðΩÞ

�
; v⃗†ðζÞ ¼

�
sinðζÞ cosðζÞ

�
: ð29Þ

Homodyne readout enforces a symmetrized expectation
operator, denoted here with the subscript HR, for all
measurements of the optical quantum states. Further details
of the measurement process are beyond the scope of this
work, but the following quadratic expectations arise when
computing the noise spectrum and are sufficient to simplify
the homodyne expectation values of m̂:

1¼hq̂2μiHR ¼hp̂2
μiHR; 0¼hq̂μp̂μiHR ¼hp̂μq̂μiHR; ð30Þ

0 ¼ hq̂μq̂νiHR ¼ hp̂μp̂νiHR for ν ≠ μ: ð31Þ

As a result of these expectations, the vector norm suffices to
evaluate noise power using this matrix formalism. The
inclusion of squeezing is often seen as a modification of the
input states q̂in, p̂in, in which case the relations of Eq. (30)
are violated. This work uses an alternative picture, where an
additional squeezing transformation is included at the very
start of the squeezing path H that acts on vacuum states q̂in
and p̂in. The squeezing transformation is defined by the

squeezing level r and the squeezing angle ϕ, which act via
the matrices

RðϕÞ≡
�
cosðϕÞ −sinðϕÞ
sinðϕÞ cosðϕÞ

�
; SðrÞ≡

�
er 0

0 e−r

�
: ð32Þ

When added to the squeezing path, the resulting quantum
noise is calculated from the observable m̂,

NðΩÞ ¼ hm̂†m̂iHR ¼ jv⃗†HRðϕÞSðrÞj2 þ
X

Tμ∈fTg
jv⃗†Tμj2;

ð33Þ

the first term of which is one of the factors in Eq. (7)

ηðΩÞ · SðΩ;ϕÞ · ΓðΩ; ζÞ ¼ jv⃗†HRðϕÞSðrÞj2: ð34Þ

At this point, the factors can be separated because: RS
determines the factor SðΩ;ϕÞ; H has been “reduced” by
loss, indicating when ηðΩÞ < 1; and the benchmark noise
level is defined by ΓðΩÞ, contained in the interferometer’s
optomechanical element HR.
To distinguish these terms, further manipulations are

necessary. The first is to examine just the vector v⃗†H to
determine how the latter term RS results in SðΩÞ. Basis
vectors for the two quadrature observables are defined, and
the local oscillator is represented using them,

v⃗†ðζÞ ¼ e⃗†pRðζÞ; e⃗q ¼
�
1

0

�
; e⃗p ¼

�
0

1

�
: ð35Þ

The basis vectors then allow the vector norm to be split into
its two componentsmq andmp, defining the observed noise
quadrature,

mqðΩÞ ¼ v⃗†He⃗q; mpðΩÞ ¼ v⃗†He⃗p: ð36Þ

The vector m⃗ contains the magnitude and angle of a
projection of the quantum state q̂in, p̂in at each frequency,
but it also contains the complex phase shift from propa-
gation delay in the interferometer and squeezing path. This
latter phase contribution does not affect noise calculations,
but must be properly handled. Projecting it away requires
maintaining phase information, and this is why the opto-
mechanical factor K is complex in this work.
The squeezing angle rotation RðϕÞ can be viewed

through its left-multiplication, applying a rotation to the
observed noise quadrature rather than to the squeezing. In
this picture, the angle ϕ can align the observed quadrature
with either the squeezing or antisqueezing quadrature. The
rotation needed to do so determines θðΩÞ, again with the
caveat that both mq and mp are complex. Their common
phase carries the delay information, but their differential
phase causes dephasing. In short, the differential phase
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forces m⃗ to project into both quadratures at any rotation
RðϕÞ. This has the effect of always adding antisqueezing to
squeezing and vice versa, resulting in the factor ΞðΩÞ. The
relations are fully derived in Appendix A using a singular
value decomposition to identify the principle noise axes. It
leads to the expressions

θðΩÞ ≈ arctan
�
ℜ
�
mq

mp

��
; ð37Þ

ΞðΩÞ ¼ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjmqj2 − jmpj2Þ2 þ 4ðℜfmqm�

pgÞ2
4ðjmqj2 þ jmpj2Þ2

:

s
ð38Þ

The observation vector m⃗, and Eq. (37) generalizes the
“effective” observed quadrature description of quantum
radiation pressure noise as misphasing from the frequency
dependence of θ. With it, the observed quadrature angle
θðΩÞ may be computed for any readout angle ζ and for
more complex interferometers HR. The ideal interferometer
example is demonstrated in Sec. IVA
The phase and magnitude of the previous argument

allows one to determine SðΩÞ from the form of S applied to
m⃗RðϕÞ. Factoring S away, the magnitude of m⃗ carries the
efficiency of transmitting the squeezed state, along with the
noise gain applied to it,

ηðΩÞ · ΓðΩ; ζÞ ¼ jmqj2 þ jmpj2: ð39Þ
ΓðΩÞ expresses the total noise from the interferometer
when squeezing is not applied, applying radiation pressure
or optomechanical squeezing to both the squeezing path
vacuum and internally loss-sourced vacuum. ηΓ is affected
by all losses, but some of them affect ΓðΩÞ as well. Using
squeezing or a coherent field to probe H always measures
the product ηΓ, so the noise gain factor Γ serves primarily
as a benchmark. As a benchmark, it relates the dependence
of NðΩÞ to SðΩÞ and separates the scaling by the efficiency
η so that the physical losses may be determined. For this
reason, there is freedom to define Γ to make it as
independent from the losses as possible, so that it best
serves as a benchmark. Here, it is defined using the
simulated knowledge of the total noise from the interfer-
ometer elements alone:

ΓðΩÞ ¼ jv⃗†HRj2 þ
X
μ

jv⃗†ΛR;μj2: ð40Þ

η is then determined by dividing Eq. (39) by Eq. (40). Under
this definition of Γ, η ∝ ηI and η ∝ ηO. Losses within the
interferometer affect ΓðΩÞ slightly, and η ∝ ηR is only
approximate. Appendix F gives an example of how losses
affect η and Γ. The primary alternative definition is to use
Γ ¼ NjS¼1, but this definition makes ηO both less physically
intuitive and also sensitive to interferometer parameters.

Subtracting ηΓ from Eq. (33) and factorizing by the
optical paths provides the definition of the remaining
efficiency terms,

ð1 − ηOÞ ¼
X
μ

jv⃗†TO;μj2; ð41Þ

ηOð1 − ηRÞΓ ¼
X
μ

jv⃗†TR;μj2; ð42Þ

ηOηRð1 − ηIÞΓ ¼
X
μ

jv⃗†T I;μj2; ð43Þ

which add together to create the loss term in Eq. (7),

ΛIROΓ ¼ ηOηRð1 − ηIÞΓþ ηOð1 − ηRÞΓþ ð1 − ηOÞ: ð44Þ

A. Ideal interferometer example

The derivations are now extended to recreate and
generalize the ideal noise model of Sec. II A, using
Eq. (14) for K. The two-photon matrix corresponding to
the interferometer in Fig. 4 is given below for the lossless
interferometer that is perfectly on resonance,

HRðΩÞ≃
�

rðΩÞ 0

−KðΩÞ rðΩÞ

�
; rðΩÞ≃ γA− iΩ

γAþ iΩ
; ΛR ¼ 0:

ð45Þ

In the ideal lossless case, the input and output paths also
have perfect efficiency ηI ≃ 1 with HIðΩÞ ¼ ηI1, ΛIðΩÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηI

p
1 and similarly for the output. These can be used to

compute H and m⃗,

mq ¼ − cosðζÞKðΩÞ þ sinðζÞrðΩÞ; mp ¼ cosðζÞrðΩÞ:
ð46Þ

The equations above maintain the correct phase informa-
tion for this ideal case analysis. Interestingly, K and rðΩÞ
have different magnitude responses resulting from different
factors of γA � iΩ, yet their phase response is the same.
This Kramers-Kronig coincidence ensures ΞðΩÞ ¼ 0 as
long as the χðΩÞ contribution to KðΩÞ is purely real. Thus,
lossy mechanics will cause QRPN to dephase injected
squeezing. This will not happen to any meaningful level for
LIGO, but is noteworthy for optomechanics experiments
operating on mechanical resonance.
The m⃗ above also includes the effect of the readout angle.

For ζ ¼ 0, it recovers Eqs. (12)–(14). More generally,
it gives

ΓðΩÞ ¼ 1þ j cosðζÞKðΩÞj2 − sinð2ζÞℜfr�ðΩÞKðΩÞg;
ð47Þ

θðΩÞ ¼ arctan

�
ℜ

�
−KðΩÞ
rðΩÞ

�
þ tanðζÞ

�
: ð48Þ
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The exact expressions above can be simplified to better
relate them to the LIGO data. First, the squeezing angle is
modified to be 0 at high frequencies, to match the
conventions of the data. This modified angle is
θ0ðΩÞ ¼ θðΩÞ − θðΩ ≫ γAÞ. Second, small shifts of the
homodyne angle are linearized,

Γ0ðΩÞ ≈ ð1 − jKðΩÞjÞ2 þ 2ð1þ ζÞjKðΩÞj; ð49Þ

θ0ðΩÞ ≈ arctan ðjKðΩÞjÞ − ζ
jKðΩÞj2

1þ jKðΩÞj2 : ð50Þ

These use the relation jKðΩÞj ≈ ℜf−KðΩÞ=rðΩÞg, valid
when the mirror is in the free-mass regime. The linearized
Γ0 shows that, when ζ ¼ −13° ¼ −0.23, for frequencies
near Ωsql, KðΩsqlÞ ≃ 1, the interferometer quantum noise is
reduced by about 23% with respect to a nominal ζ ¼ 0
readout. This change is shown in the blue vs grey plotted
data for the Livingston loss plot in Fig. 3 of 1 − η. There, η
changes as the Γ model changes since only ηΓ can be
measured due to subtracting an unsqueezed reference data
set. The 23% noise reduction corresponds to an approx-
imately 1 dB improvement from ponderomotive quantum
correlations. The angle formula above indicates that for
frequencies Ω≲ Ωsql, the local oscillator also adds some
additional shift to θ at low frequency, which is also
observed in the LLO angle fits.
This analysis gives an example of how the derivations

of this section are applied to extend the existing ideal
interferometer models towards the real instruments. Exact
models including more optical physics are yet more
analytically opaque, but give a more complete picture if
implemented numerically. Appendix E shows the full
matrix solution, including the cavities, to recover these
equations while also handling cavity length offset detun-
ings. It also includes transverse modal mismatch in its
description. Appendix F gives the minimal extension of this
ideal lossless interferometer to incorporate transverse mis-
match, showing how the noise gain, Γ, and rotation angle θ
change specifically from mismatch. In particular, it shows
that relating a measurement ofΩsql using squeezing back to
the arm power PA using Eqs. (12) and (14) is biased by
transverse mismatch.

V. CAVITY MODELING AND METRICS

The previous section derived the general form of the
squeezing metrics using matrices of the two-photon formal-
ism. For passive systems, the optical transfer function, hðΩÞ,
given at every sideband frequency, is sufficient to character-
ize the response to externally supplied squeezing. The
conceptual simplification and restriction to using only trans-
fer functions is useful for interferometer modeling. Transfer
functions, being complex scalar functions, are suitable
for analytic calculations of cavity response and can be

decomposed into rational function forms to inspect the
rational roots, zeros and poles, and the overall gain of the
response.
This section analyzes the coupled cavity system of

the interferometer, depicted in Fig. 4, through its decom-
position into roots. More complicated transverse modal
simulations analyze the frequency response of the inter-
ferometer cavities for each optical mode to every other
mode. Modal simulations thus output a matrix of transfer
functions, HðΩÞ, which is difficult to analytically manipu-
late, but Sec. VI shows how it can be projected back to a
single scalar transfer function hðΩÞ and further simplified
into the squeezing metrics.
The transfer function techniques of this section eluci-

date new squeezing results by avoiding the combined
complexity of both two-photon and modal vector spaces.
The full generality of two-photon matrices is only required
for active systems that introduce internal squeezing, para-
metric gain or radiation pressure. Passive systems have
the property that q̂out, p̂out also obey the expectations of
Eqs. (30) and (31). Following the notation of Sec. IV, this
results in the following condition:

1 ¼ HH† þ
X
μ

TμT
†
μ: ð51Þ

Additionally, Γ ¼ 1 is implied by that condition. Without
parametric gain, photons at upper and lower sideband
frequencies are never correlated by a passive system. By
the passivity condition and manipulations manipulations
between the sideband and quadrature basis representations,
Appendix C derives the squeezing metrics purely in terms
of the transfer function hðΩÞ,

FIG. 4. The two-photon transformation matrices experienced
by squeezing through the sequence of Fig. 1. The effective linear
coupled cavity, including the optomechanical effect of radiation
pressure, is collected and computed into the transformation HR.
The middle cavity is the signal recycling cavity and the rightmost
cavity represents the coherent combination of both arms. Each
cavity adds losses from each mirror. For simplicity, these are
collected into round-trip cavity loss contributions, ΛR;s, and ΛR;s

that inject standard optical vacuum into the cavities, circulating
and transforming into the loss terms TR;μ while lowering the
efficiency ηR. Transformations of the squeezing at the input and
output are included with the terms, HI, HO and any additive
vacuum contributions, T I;μ, TO;μ.
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θðΩÞ ¼ ðargðhðþΩÞÞ þ argðhð−ΩÞÞÞ=2; ð52Þ

ηðΩÞ ¼ ðjhðþΩÞj2 þ jhð−ΩÞj2Þ=2; ð53Þ

ΞðΩÞ ¼ ðjhðþΩÞj − jhð−ΩÞjÞ2=4η: ð54Þ

Quantum filter cavities are a method for using an entirely
optical system to reduce the radiation pressure associated
with squeezed light [16,17]. They are passive cavities,
and provide a useful example to study these squeezing
metric formulas. The first of these, Eq. (52), is a well-
established formula for the filter cavity design. It indi-
cates that for cavities with an asymmetric phase response,
usually due to being off-resonance or “detuned,” the
squeezing field picks up a frequency-dependent quad-
rature rotation. Such a rotation applied in HI can be
generated by a cavity with transfer function hIðΩÞ before
the interferometer. This cavity rotation compensates
the θðΩÞ due to HR. Together, the product HRHI has
θðΩÞ ¼ 0, allowing a single choice of squeezing angle ϕ
to optimize NðΩÞ at all frequencies.
The formulas (53) and (54) indicate how losses repre-

sented in a transfer function translate to loss-like and
dephasing degradations from cavity reflections. For filter
cavities, these degradations are investigated in Ref. [23],
but this new factorization into scalar functions clarifies the
discussion. The efficiency ηðΩÞ behaves as expected: an
average of the loss in each sideband. The form of ΞðΩÞ is
less expected, showing how the combination of loss and
detuning in filter cavities creates noise that scales with the
squeezing level. A simple picture for the dephasing effect is
that when optical quadratures are squeezed, the noise
power in both upper and lower sidebands is strictly
increased. The sideband correlations allow the increased
noise to subtract away for squeezed quadrature measure-
ments but to add for measurements in the antisqueezed
quadrature. The asymmetric losses of detuned cavities
preserve the noise increase on one sideband, while degrad-
ing the correlations. This ruins the subtraction for the
squeezed quadrature and introduces ΞðΩÞ > 0. This source
of noise is e�r squeezing level dependent but entirely
unrelated to fluctuations of the squeezing phase ϕrms.

A. Single cavity model for interferometers

This section analyzes the effect of the interferometer
cavities on squeezing. It starts by considering an interfer-
ometerwithonlyonecavity—either in theMichelsonarmsor
fromamirror at the output port, but not both. It represents the
first generation of GWdetectors. This single cavity scenario
is also similar toaquantumfilter cavity, in the regimeof small
detuning [53–55]. Advanced LIGO uses a coupled cavity
system,depicted inFig. 4, and the transfer functionequations
for the reflection from the resonant sideband extraction

cavity are extended in the next subsection to include the
loss and detuning of the additional cavity.
A single cavity operated near resonance may be

described using the scale parameters of the cavity band-
width γA, loss rate λA and detuning frequency δA, which are
computed from the physical parameters of the mirror
transmissivity Ta, round-trip loss Λa, cavity length La,
and microscopic length detuning ΔLa,

γA ¼ cTa

4La
; λA ¼ cΛa

4La
; δA ¼ −ck

ΔLa

La
: ð55Þ

These relations are accurate in the high-finesse limit
Ta ≪ 1, and combine to give the transfer function of the
frequency-dependent cavity reflection,

r1ðΩÞ ≈ −
ðγA − λAÞ − iðΩ − δAÞ
ðγA þ λAÞ þ iðΩ − δAÞ

: ð56Þ

Notably, the sign of the reflectivity for a high-finesse cavity
on resonance r1ðΩ ≪ γAÞ ¼ −1, but outside of resonance
r1ðΩ ≫ γAÞ ¼ 1. This sign determines constructive or
destructive interference in transverse mismatch loss ana-
lyzed in the next section. The internal losses of the cavity
Λa become cavity enhanced in the reflection, causing
squeezing to experience losses of ΛA,

ΛA ≡ 1 − ηðΩÞ
				 h¼r1jΩj≪γA

≈
4λA
γA

≈
4Λa

Ta
: ð57Þ

Furthermore, detuning the cavity off of resonance causes a
rotation of reflected squeezing. For small detunings, the
rotation can be approximated,

θðΩÞ
				 h¼r1
kΔLa≪Ta

≈
2δAγA
γ2A þΩ2

≈ −kΔLa
8

Ta

γ2A
γ2A þ Ω2

: ð58Þ

Fluctuations in ΔLa or δA lead to a phase noise analogous
to ϕrms, but with the frequency dependence from the above
equation [23]. Additionally, losses in the cavity lead to
intrinsic dephasing ΞðΩÞ, calculated below. This calcula-
tion is valid at any detuning δA, even those larger than the
cavity width γA. Its validity only requires being in the
overcoupled cavity regime, where losses λA ≲ γA=2,

ΞðΩÞjh¼r1 ≈
�

4γAλAδAΩ
ðγ2AþðΩ−δAÞ2Þðγ2AþðΩþδAÞ2Þ

�
2

: ð59Þ

When plotted, this expression for ΞðΩÞ has a Lorentzian-
like profile, with a peak at ΩΞmax. Above jδAj≳ γA, where
the cavity resonance acts entirely either on upper or lower
sidebands, the peak dephasing reaches a maximum. At
small detunings, jδAj≲ γA, the sideband loss asymmetry
scales with the detuning,

L. MCCULLER et al. PHYS. REV. D 104, 062006 (2021)

062006-14



ΩΞmax ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A=4þ δ2

q
; Ξmax ≈

λ2A
γ2A

·
8δ2A

5γ2A þ 8δ2A
: ð60Þ

This single cavity model is also useful for analyzing
quantum filter cavities and, like the Ξ metric itself, these
peak values have not been calculated in past frequency-
dependent squeezing work. Conventional squeezing phase
uncertainty, ϕrms, can be cast into the units rms radians of
phase deviation, leading to the noise suppression limit for
squeezing SðΩÞ ≥ 2ϕrms, by Eq. (11). For highly detuned
cavities such as quantum filter cavities,

ffiffiffiffiffiffiffiffiffiffiffi
ΞðΩÞp

≈ Λfc=Tfc.
Using the parameters of the Aþ filter cavity [20], Λfc ≈
60 ppm and Tfc ¼ 1000 ppm indicates that optical dephas-
ing is of order 60 mrad. For an optimal filter cavity with low
losses [20], this dephasing maximum occurs at ΩΞmax ¼ffiffiffiffiffiffiffiffi
5=8

p
ΩSQL. This level of dephasing is commensurate with

or even exceeds the expected residual phase uncer-
tainty ϕrms < 30 mrad.
Optical dephasing from the LIGO interferometer cavities

is not expected to be large as they are stably operated on
resonance; however, detuned configurations of LIGO [56]
are limited by dephasing from the unbalanced response and
optical losses in the signal recycling cavity.

B. Double cavity model for interferometers

For interferometers using resonant sideband extraction,
like LIGO, the arm cavities have a length La, an input
transmissivity of Ta, and are each on resonance to store
circulating laser power. The signal recycling cavity (SRC)
has a length Ls and a signal recycling mirror (SRM) of
transmissivity Ts. The SRM forms a cavity with respect to
the arm input mirror that resonantly increases the effective
transmissivity experienced by the arm cavities to be larger
than Ta, broadening the signal bandwidth. While the SRC
is resonant with respect to the arm input mirror, it is
antiresonant with respect to the arm cavity, due to the
negative sign of Eq. (56). The antiresonance leads to the
opposite sign in the reflection transfer function below,
Eq. (65). The discrepancy in resonance vs antiresonance
viewpoints is why the signal recycling cavity is also called
the signal extraction cavity in GW literature.
The coupled cavity forms two bandwidth scales for the

system, γA, the modified effective arm bandwidth, and γS,
the bandwidth of the signal recycling cavity. The arm and
signal cavities have their respective round-trip losses Λa
and Λs, as well as length detunings ΔLa, ΔLs. In practice,
the arm length detuning is expected to be negligible to
maximize the power storage, but the signal recycling cavity
detuning can be varied by modifying a bias in the control
system that stabilizes ΔLs.
The scale parameters for the cavity transfer function are

approximated from the physical parameters:

ua ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ta

p
; us ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ts

p
; ð61Þ

γA ¼ cua
2La

·
2 − us
us

; γS ¼
cus
2Ls

; ð62Þ

λA¼ c
La

�
Λa

4
−
uaΛs

2u2s
þuaΛs

4us

�
; λS ¼

cΛs

4Ls

�
1−

us
2

�
; ð63Þ

δA ¼ −ck
ΔLa

La
−
γA
γS

δS; δS ¼ −ck
ΔLs

Ls
: ð64Þ

These approximations are valid for the LIGOmirror param-
eters (see Table I) and model the loss and detuning to 5%
accuracy. They are derived in Appendix D from Taylor
expansions, solving roots, and selectively removing terms.
Expanding in the u factors of Eq. (61) gives lower error than
expanding in transmissivity or reflectivity factors directly,
due to the low effective finesse of the coupled cavity system
and the high transmissivity of the SRM. The scale factors
result in the following reflectivity transfer function:

r2ðΩÞ ¼
ðγA − λAÞ − iðΩ − δAÞ
ðγA þ λAÞ þ iðΩ − δAÞ

·
ðγS − λSÞ − iðΩ − δSÞ
ðγS þ λSÞ þ iðΩ − δSÞ

:

ð65Þ

Notably, this reflectivity is r2ð�Ω ≪ γÞ ¼ 1 and r2ðγA ≪
�Ω ≪ γSÞ ¼ −1whichhasanoppositeoverall sign to thatof
single cavity interferometers. On reflection, the squeezing
field experiences different cavity enhanced losses depending
on the frequency,

ΛS ≡ 1 − ηðΩÞ
			 h¼r2
γA≪jΩj≪γS

; ≈
2 − us
us

Λs; ð66Þ

ΛA ≡ 1 − ηðΩÞ
			 h¼r2jΩj≪γA

; ≈
4λA
γA

þ Λs ≈
us
ua

Λa: ð67Þ

The data set of Sec. III shows frequency-dependent losses,
where the loss increases 12% for LLO and 33% for LHO.
Assuming the losses result from the equations above, this
corresponds to round-trip losses in theLIGOsignal recycling
cavities, Λs, of 1.1% to 3.2%, which is not realistic. Most
mechanisms that introduce loss in the SRC would also
introduce it into the power recycling cavity in an obvious
manner. The current power recycling factors exclude this
possibility, and independent measurements of γA bound Λs
losses to ≤ 3000 ppm. The next section investigates how
transverse mismatch can result in this level of observed
losses.
In addition to the losses, Eq. (65) can be used to

determine the cavity-induced squeeze state rotation from
the detuning of the signal recycling cavity,

θðΩÞ
				 h¼r2
δS≪γS
ΔLa¼0

≈
2δAγA
γ2A þ Ω2

þ 2δSγS
γ2S þΩ2

ð68Þ
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≈ −kΔLs
4

us

�
γ2S

γ2S þΩ2
−

γ2A
γ2A þΩ2

�
: ð69Þ

This indicates the surprising result that detuning the SRC
length does not affect the squeezing within the effective
arm bandwidth to first order. Instead, it adds the squeezing
rotation in the middle band above the arm bandwidth but
below the SRC bandwidth. In the data analysis of Sec. III
and Fig. 3, the convention for θðΩÞ is set to be 0 at “high”
frequencies in this intermediate cavity band, in which case
it appears to cause a rotation around γA. This convention
used for the data corresponds to omitting the first, γS-scaled
term of Eq. (69).

VI. TRANSVERSE MISMATCH MODEL

Squeezing, as it is typically implemented for GW inter-
ferometers, modifies the quantum states in a single optical
mode. For LIGO, this mode is the fundamental Gaussian
beam resonating in the parametric amplifier cavity serving as
the squeezed state source. The cavity geometry establishes a
specific complex Gaussian beam parameter that defines a
modal basis decomposition into Hermite-Gaussian (HG) or
Laguerre-Guassian (LG) modes. That basis is transformed
and redefined during the beam propagation through free
space and through telescope lenses on its way to and from
the interferometer. The cavities of the interferometer each
define their own resonating beam parameters and respective
HG or LG basis of optical modes.

In practice, the telescopes propagating the squeezed
beam to and from the interferometer imperfectly match
the complex beam parameters, so basis transformations
must occur that mix the optical modes. The mismatch of
complex beam parameters is called here “transverse mis-
match.” Nonfundamental HG or LG transverse modes do
not enter the OPA cavity, and so carry standard vacuum
rather than squeezing. Basis mixing from transverse mis-
match thus leads to losses; however, unlike typical losses
such basis transformations are coherent and unitary, which
leads to the constructive and destructive interference effects
studied in this section.
The interferometer transfer function hðΩÞ is a single

scalar function representing the frequency dependence of
the squeezing channel from source to readout, but the
optical fields physically have many more channels. The
cavities visited by the squeezed states each have a transfer
function matrix in their local basis, given by HI, HR, HO
for the squeezing input, interferometer reflection, and
system output respectively. The diagonals of these matrices
indicate the frequency response during traversal for every
transverse optical mode. The off-diagonals represent the
coupling response between modes that result from scatter-
ing and optical wavefront errors.
Between the cavities, U matrices represent the basis

transformations due to transverse mismatch. Here, e⃗sqz,
e⃗read are basis vectors for projecting from the single optical
mode of the emitted squeezed states and to the single mode
of the optical homodyne readout defined by its local
oscillator field,

TABLE I. Parameters of LIGO for data fitting and modeling.

Parameter Symbol LLO Value LHO Value

Arm input transmissivity Ta 0.0148 0.0142
Arm length La 3995 m
Arm round-trip loss Λa ∼80 ppm
SRM transmission Ts 0.325
SRC length Ls 55 m
SRC round-trip loss Λs ≲3000 ppm

Mirror mass m 39.9 kg
Arm power PA 200� 10 kW 190� 10 kW
QRPN crossover Ωsql=2π 33 Hz 30 Hz

Arm signal band γA=2π 450 Hz 410 Hz
SRC band γS=2π 80 kHz

Arm length detuning ΔLa 0 nm
SRC length detuning ΔLs −1.02 nm −1.23 nm
Arm resonant loss ΛA ≲2000 ppm
SRC resonant loss ΛS ∼1% to 3%

Arm/SRC detuning δA=2π −32.3 Hz −37.3 Hz
Injected squeezing e�2r �9.7 dB �8.7 dB
SQZ-OMC mismatch ϒO 2% 4%
Reflection mismatch (fit) ϒR 12% 35%
Additional SQZ loss (fit) ΛIO ¼ 1 − ηIηO 31% 34%
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hðΩÞ ¼ e⃗†readHðΩÞe⃗sqz; ð70Þ

HðΩÞ ¼ HOUO;RHRUR;IHI: ð71Þ

Equation (70) and Eq. (71) give the general, basis-inde-
pendent, form to compose the effective transfer function for
the squeezed field using a multimodal simulation of a
passive interferometer. This is complicated in the general
case, but the following analysis develops a simpler, though
general, model for how transverse mismatch manifests as
squeezing losses.
Transverse mismatch is often physically measured as a

loss of coupling efficiency, ϒ, of an external Gaussian
beam to a cavity measured as a change in optical power.
Realistically, more than two transverse modes are necessary
to maintain realistic and unitary basis transformations, but,
for small mismatches of complex beam parameters,
ϒ < 10%. In this case, only the two lowest modes in the
Laguerre-Gauss basis have significant cross-coupling. For
low losses, the fundamental Gaussian mode, LG0, loses
most of its power to the radially symmetric LG1 mode,
assuming low astigmatism and omitting azimuthal indices.
This motivates the following simplistic two-mode model
to analyze the effect of losses on hðΩÞ. In this model U
gives the unitary, though not perfectly physical, basis
transformation:

Uðϒ;ψ ;ϕÞ≡ eiϕ
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 −ϒ
p

−eiψ
ffiffiffiffi
ϒ

p

e−iψ
ffiffiffiffi
ϒ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒ

p
�
: ð72Þ

This unitary transformation includes two unknown phase
parameters. The first, ψ , is the phase of the mismatch, which
characterizes whether beam size error or wave-front phasing
error dominates the overlap integral of the external LG0 and
cavity LG1 modes. The second, ϕ, is the mismatch phase
error from the external LG0 to the cavity LG0. The ϕ term is
included above to fully express the unitary freedom ofU, but
is indistinguishable from path length offsets, physically
controlled to be 0, and ignored in further expressions.
In the case of a GW interferometer with an output mode

cleaner, there are two mode matching efficiencies
expressed as individually measurable parameters. The first
is the coupling efficiency (in power) and phasing associated
between the squeezer and interferometerϒI;ψ I. The second
are parameters for efficiency and phasing between the
squeezer and output mode cleaner, ϒO;ψO, which defines
the mode of the interferometer’s homodyne readout. Both
cases represent a basis change from the Laguerre-Gauss
modes of the squeezer OPA cavity into the basis of each
respective cavity. In constructing HðΩÞ, however, the
squeezing is transformed to the interferometer basis,
reflects, and then transforms back to the squeezing basis.
This corresponds to the operations of Fig. 5. There are also
parameters to express the coupling efficiency and phase,
ϒF;ψF, between the interferometer cavity and the OMC

cavity. The ϒF parameter is less natural to analyze
squeezing as it is not independent from ϒI and ϒO. It is
considered at the end of this section, since it can also be
independently measured.
Figure 5 is implemented into Eq. (71) through this

simplistic two-mode representation by assuming that the
interferometer reflection transfer functionrðΩÞ applies to the
LG0 mode in the interferometer basis. The LG1 mode picks
up the reflection transfer function rhom, which is approx-
imately∼1due tohigh-ordermodesbeingnonresonant in the
interferometer cavities and thus directly reflecting,

HR ¼
�
rðΩÞ 0

0 rhomðΩÞ

�
; G ¼

�
1 0

0 eiψG

�
; ð73Þ

rðΩÞ ¼ r2ðΩÞ or r1ðΩÞ; rhomðΩÞ ¼ eiθhom ≈ 1: ð74Þ

Thereflection termrðΩÞcanuseeither thesingle [Eq. (56)]or
double [Eq. (65)] cavity forms. LIGO, using resonant side-
bandextraction,usesr2ðΩÞ.Frequencieswhere thereflection
takes a negative signwill be shown to experience destructive
interference frommodal basis changes, increasing squeezing
losses. The G matrix includes a phasing factor due to the
additional Gouy phase of higher-order modes. This factor is
degenerate with the mismatch phasings ψ I and ψO in
observable effects. These matrices are composed per
Fig. 5 to formulate the overall transfer function of the
squeezed field,

HðΩÞ ¼ UðϒO;ψOÞGU†ðϒI;ψ IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UO;R

HRUðϒI;ψ IÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
UR;I

; ð75Þ

hðΩÞ ¼
�
1

0

�T
HðΩÞ

�
1

0

�
; and using HO ¼ HI ¼ 1:

ð76Þ

FIG. 5. Propagation of the squeezed beam and unsqueezed
higher-order transverse beam modes from source to readout. The
stages (a)–(d) correspond to the components in Fig. 1, depicting
the matrix math of Eqs. (73)–(76). ϒI represents the transverse
mismatch loss of the squeezing to interferometer, and ϒO is the
mismatch of the squeezing to readout via the output mode cleaner
(OMC). These mismatches cause beam-splitter-like mixing
between the LG0 and LG1+ modes through Eq. (72). ψ I, ψO,
ψG are unmeasured phasing terms of the interferometer and
output mismatch and of the Gouy-phase advance from the beam
propagating to the output mode cleaner.
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Ignoring intracavity losses and detunings, the two reflection
forms r1, r2 can be simplified to give their respective transfer
functions h1, h2.
For quantum noise below Ω < γS, the double cavity

reflectivity r2ðΩÞ behaves like a single cavity, using the
γA of Eq. (62) and with the opposite reflection sign as
Eq. (56),

r2ðΩÞ ≈þ γA − iΩ
γA þ iΩ

⇒ h2ðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒO

p γA − iαΩ
γA þ iΩ

;

ð77Þ

r1ðΩÞ ¼ −
γA − iΩ
γA þ iΩ

⇒ h1ðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒO

p iΩ − αγA
iΩþ γA

;

ð78Þ
using the factor

α≡ 1 − 2ϒI þ 2β
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒIϒO

p
eiψR ð79Þ

where

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒI

1 −ϒO

s
≈ 1; ð80Þ

ψR ≡ ψO þ ψG − ψ I: ð81Þ

The phasing factor ψR shows that the unknown mismatch
phasings combine to a single unknown overall phase. This
overall phase determines the extent to which the separate
beam mismatches of ϒI and ϒO coherently stack or cancel
with each other. The factor α is the total squeezer LG0 to
readout LG0 coupling factor for the effective mode mis-
match of the full system, specifically when the interfer-
ometer reflection rðΩÞ ¼ −1. As an effective mismatch, it
can be related back to the diagonal elements of Eq. (72) to
give an effective mismatch loss on reflection, ϒR,

ϒR ¼ 1 − jαj2 ≈ 4ϒI − 4β
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒIϒO

p
cosðψRÞ: ð82Þ

This effective mismatch loss becomes apparent after
computing the full system efficiency ηðΩÞ [Eq. (53)] using
h1 and h2,

ηRðΩÞjh¼h2 ¼ ð1 −ϒOÞ
γ2A þ ð1 −ϒRÞΩ2

γ2A þ Ω2
; ð83Þ

ηRðΩÞjh¼h1 ¼ ð1 −ϒOÞ
Ω2 þ ð1 −ϒRÞγ2A

γ2A þ Ω2
: ð84Þ

For the double cavity system of LIGO, Fig. 3 is presented
using the loss rather than efficiency. To relate to the
measurement, the loss attributable to mode mismatch is
then written as

ΛϒðΩÞ≡ 1 − ηRjh¼h2 ≈ϒO þ Ω2

γ2A þ Ω2
ϒR: ð85Þ

Mode mismatches between the squeezer and OMC were
directly measured during the LIGO squeezer installation to
be 2–4%, and mismatches from the squeezer and interfer-
ometer were indirectly measured but are expected to be of a
similar level. The large factors in Eq. (82) indicate that the
independent mismatch measurements are compatible with
the observed frequency dependence and levels of the losses
to squeezing. The effective mismatch loss ϒR has the
following bounds with respect to the independent mismatch
measurements:

ϒR ≈ 4ϒI when ϒO ¼ 0; ð86Þ

0 ≤ ϒR ≤ 8ϒI when ϒI ¼ ϒO; ð87Þ

ϒR ≈ 4ϒI when averaged over ψR: ð88Þ

It is worth noting here how the realistic interferometer
differs from this simple two-mode model. The primary key
difference is that real mismatch occurs with more trans-
verse modes. Expanding this matrix model to include more
modes primarily adds more cosðψRÞ-type factors to the
last term of Eq. (82). These factors will tend to average
coherent additive mismatch between the squeezer and the
OMC away, leaving only the squeezer to interferometer
terms. Additionally, not only is there beam parameter
mismatch from imperfect beam-matching telescopes, but
there is also some amount of misalignment, statically or in
rms drift. Mismatch into modes of different order picks up
different factors of ψG. Together, including more modes
leaves the bounds above intact, but makes Eq. (88) more
representative given the expanded dimensionality of mis-
match space to average away cosðψRÞ.
The other notable difference in realistic instruments is

that the high-order modes pick up small phase shifts of
reflection, as the cavities are not perfectly out of resonance
at all high-order modes. This corresponds to rhom ≠ 1. The
signal recycling mirror has sufficiently how transmissivity
that the finesse of the SRC is low and, even when off
resonance, higher-order modes pick up a small but slowly
varying phase shift. This has the property of mixing the
frequency-dependent losses resulting from h1 and h2,
resulting in a slightly more varied frequency dependence
that is captured in the full model of Appendix E.
While the phasing of the mismatch, ψR, is not directly

measurable, it manifests in an observable way. It adds to
the complex phase of α to cause a slight rotation of the
squeezing phase, making the cavity appear as if it is
detuned. The frequency dependence and magnitude of this
rotation is given by [cf. Eq. (52)],
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θϒðΩÞ≡ θjh¼h2 ≈
−Ω2

γ2A þ Ω2
2β

ffiffiffiffiffiffiffiffiffiffiffiffi
ϒIϒO

p
sinðψRÞ ð89Þ

which adds to the rotation from cavity length detuning
[Eq. (69)]. The addition of this term with

ffiffiffiffiffiffiffiffiffiffiffiffi
ϒIϒO

p
unknown

confounds the ability to use the data of Fig. 3 to constrain ψR.
There is a small discrepancy between the length-detuning-
induced optical spring observed in the interferometer cali-
bration [57,58] and the detuning inferred from the data. The
additional mismatch phase shift helps explain that such a
discrepancy is possible, but the two should be studied inmore
detail. Note that the small Gouy phase shift from rhom can be
significant for this small detuning effect. The expression
above is primarily provided to indicate the magnitude of
variation as a function of sinðψRÞ, so that future observations
can better constrain ψR by comparing squeezing measure-
ments of θðΩÞ with calibration measurements of the optical
spring arising from δS.
The asymmetric contribution of α in Eq. (77) also causes

mode mismatch to contribute to optical dephasing, ΞðΩÞ
[cf. Eq. (54)]. The dependence on rhom;ϒI;ψR is complex
and does not have single dominating contributions, so an
analytic expression is not computed here. Calculating
the exact models of Appendix E with the parameters of
Table I shows a contribution of

ffiffiffiffi
Ξ

p
that peaks at γA and

is 10–20 mrad for the Livingston LLO model, and
10–50 mrad for the Hanford LHO model, with a range
due to imperfect knowledge of the mismatch parameters.
The transverse mismatch calculations so far use the

parameters ϒO, which is directly measurable, and ϒI,
which is independent, but ϒI cannot easily be measured
using invasive direct measurements due to the fragile
operating state of the GW interferometer. Another mis-
match parameter exists for the signal beam traveling with
the Michelson fringe-offset light. This beam experiences
a separate mode matching efficiency, ϒF, denoting the
mismatch loss between the interferometer and the OMC.
ϒF can be calculated from the original parameters by
following the red signal path depicted in Fig. 5,

eiϕFUðϒF;ψFÞ ¼ UðϒO;ψOÞGU†ðϒI;ψ IÞ: ð90Þ

Expanding this form results in the following relations:

ϒF ≈ϒO þϒI − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒOϒI

p
cosðψRÞ; ð91Þ

ϒF ≈ϒR=2þϒO −ϒI: ð92Þ

Experimentally, ϒF can be determined or estimated more
directly than ϒI by using signal fields from the arms,
though it can be confused with projection loss when the
local oscillator readout angle ζ ≠ 0 [cf. Eq. (29)]. These
formulas provide the set of relations to estimate each of the
mode mismatch parameters from the others, and potentially
the overall mismatch phase ψR as well. These relations are

calculated using the assumptions of this section: the two-
mode approximation and that rhom ≃ 1.
Together, the relations of this section give insight into

how the physical mismatch parameters, ϒI, ϒO and ϒF
contribute to squeezing degradations. ϒR is a new form of
effective mismatch parameter that is directly measurable
from squeezing data, using the analysis of Sec. III. It
indicates how squeezing changes with frequency due to
Eqs. (83) and (84). Together, the complex, coherent inter-
actions of transverse modal mixing on squeezed states
can be concisely characterized in cavity-enhanced
interferometers.

A. Implications for frequency-dependent squeezing

This analysis of the transverse mismatch applies to the
reflection of squeezing off of any form of cavity, namely,
the detuned filter cavity for frequency-dependent rotation
of squeezing in the LIGO Aþ upgrade. This cavity will be
installed on the input, HI section of the squeezing trans-
formation sequence. The filter cavity mismatch loss ϒfc
will behave analogously to ϒI, introducing losses of ∼4ϒfc
at frequencies resonating in the cavity. The mismatch loss
adds to those caused by the internal round-trip cavity loss
Λfc, creating the effective loss ΛFC ≈ 4ϒfc þ 4λFC=γFC
using Eq. (55).
The intracavity losses then set the scale for how much

transverse mismatch is allowable beforemismatch dominates
the squeezing degradation,ϒfc < Λfc=Tfc.More importantly,
they add to the dephasing from the detuned cavity, by creating
an effective λ0FC ¼ λFC þϒfcγFC which can be used in
Eq. (60). The dephasing will set the limit to the allowable
injected squeezing e�2r level as it introduces antisqueezing at
critical frequencies in the spectrum for astrophysics.

VII. CONCLUSIONS

Before this work, the squeezing level in the LIGO
interferometers was routinely estimated using primarily
high-frequency measurements. This was done to utilize a
frequency band where the classical noise contributions
were small, while also giving a large bandwidth over which
to improve the ΔFΔt statistical error in noise estimates. In
doing so, LIGO recorded a biased view of the state of
squeezing performance between the two instruments. The
data analysis of this work has revealed several critical
features to better understand and ultimately improve the
quantum noise in LIGO.
First, it indicated that the two sites have similar optical

losses in their injection and readout components, as seen
from the low-frequency losses of Fig. 3. There is still a
small excess of losses over the predictions given in Ref. [3],
but substantially less than implied when estimating the
losses using high-frequency observations. The most cul-
pable loss components in the LIGO interferometers are
being upgraded for the next observing run.
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Second, this data analysis indicated that squeezing is
degraded particularly at high frequencies, and the modeling
and derivations provide the mechanism of transverse
optical mode mismatch, external to the cavities, as a
plausible physical explanation. This will be addressed in
LIGO through the addition of active wave-front control to
better match the beam profiles between the squeezer’s
parametric amplifier, new filter cavity installation, inter-
ferometer, and output mode cleaner.
Third, the quantum radiation pressure noise is now not

only measured, but employed as a diagnostic tool along
with squeezing. QRPN indicates that the effective local
oscillator angle in the Michelson fringe-offset light at LLO
is a specific, nonzero, value. This indicates that to power up
the detector further, while maintaining a constant level of
fringe light, the angle will grow larger and cause more
pronounced degradation of the sensitivity by projecting out
of the signal’s quadrature. Ultimately, the LO angle should
become configurable using balanced homodyne detection,
another planned upgrade as part of “A+.”
Finally, this work carefully derived useful formulas to

manipulate the quantum squeezing response metrics. These
are useful to reason and rationalize the interactions of
squeezing with ever more complex detectors, both for
gravitational wave interferometers, and more generally as
squeezing-enhanced optical metrology becomes more
commonplace. The design of a future generation of
gravitational wave detectors must be optimized specifically
to maintain exceptional levels of squeezing compared to
today. The quantum response metrics derived in this paper
will aid that design work by simplifying our interpretation
of squeezing with simulations. With these diagnostics and
the data from observing run three, LIGO is now better
prepared to install and characterize frequency-dependent
squeezing in its “A+” upgrade not as a demonstration, but
for stable, long-term improvement of the quantum-
enhanced observatories to detect astrophysical events.
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APPENDIX A: DEPHASING IN ACTIVE
INTERFEROMETERS

This Appendix provides the technical derivation of
Eqs. (37) and (38) in Sec. IV, and uses the terms defined
there. This derivation produces the intermediate steps in the
relation (34), starting from the right-hand side of that

equation. From there, the m⃗ effective observation vector
can be inserted. This vector is complex, while the left-
acting matrices R and S are both real. The final noise
expression uses a vector norm that takes the square sum of
all of the real and imaginary parts of the resulting vector.
The vector norm can formally be replaced by a matrix
Frobenius norm, notated j · jF, while the complex vector m⃗
is split into the real matrix q,

jv⃗†HRðϕÞSðrÞj2 ¼
				
�
mq

mp

�T
RðϕÞSðrÞ

				2 ¼ jqTRðϕÞSðrÞj2F;

ðA1Þ

q≡
�
ℜfmqg ℑfmqg
ℜfmpg ℑfmpg

�
: ðA2Þ

The q matrix can then undergo a singular value decom-
position into two rotations acting on a real diagonal matrix,

RðθDÞ
�Σ− 0

0 Σþ

�
RðθCÞ≡ q: ðA3Þ

Σ− and Σþ are the smaller and larger singular values,
respectively. The rotations are labeled θD and θC for the
differential and common rotations. The common angle
expresses the average phase on both optical quadratures,
physically due to transmission or cavity delay, whereas the
differential angle expresses the rotation of the principle
squeezing axis into a specific optical quadrature. θD
calculated from the singular value decomposition (SVD)
is the exact form of Eq. (37). The decomposition may then
be inserted into Eq. (A1) to create a scalar expression taking
the form of the left-hand side of Eq. (34),

jqTRðϕÞSðrÞj2F ¼ðΣ2þe−2rþΣ2
−eþ2rÞcos2ðϕ−θDÞ

þðΣ2þeþ2rþΣ2
−e−2rÞsin2ðϕ−θDÞ: ðA4Þ

From there, terms can be extracted to form the relations of
Eqs. (7)–(10)

ηΓ ¼ jv⃗†Hj2 ¼ jmqj2 þ jmpj2 ¼ Σ2þ þ Σ2
−; ðA5Þ

ΞηΓ ¼ Σ2
−; ð1 − ΞÞηΓ ¼ Σ2þ: ðA6Þ

Finally, dividing Eq. (A6) by Eq. (A5) gives the dephasing
parameter in terms of the principle squeezing levels and
total observed noise magnitude,

Ξ ¼ Σ2
−

jmqj2 þ jmpj2
: ðA7Þ

The specific formulas (37) and (38) follow from the
analytic computation of the SVD for 2-by-2 matrices,
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which generates a specific expression for the singular
values, but is too unwieldy to include for the exact angle.
The exact angle is θðΩÞ≡ −θD given the chosen ordering
convention of the singular values. Instead, an approxima-
tion to θD is given in the limit of small Ξ.

APPENDIX B: INCLUDING PHASE
NOISE WITH DEPHASING

The dephasing parameter Ξ is derived as an intrinsic
parameter due only to the optical system; however, it enters
the response (9) exactly the same as the nonintrinsic phase
noise ϕ2

rms evaluated in Eq. (6). Applying the same expect-
ation operator on Eq. (9) as was applied for Eq. (6)
generates this sequence of squeeze-level parameters S0;1;2,

S0� ¼ e�2r; ðB1Þ

S1� ¼ ð1 − ϕ2
rmsÞS0� þ ϕ2

rmsS0∓; ðB2Þ

S2� ¼ ð1 − ΞÞS1� þ ΞS1∓; ðB3Þ

which may be expanded and then collected into the
effective dephasing Ξ0ðΩÞ,

Ξ0ðΩÞ ¼ Ξþ ϕ2
rms − 2Ξϕ2

rms; ðB4Þ

This equation maintains the limits that 0 ≤ Ξ0 ≤ 0.5. The
sequence of equations (B1)–(B3) can be extended to
include more sources of phase noise like ϕ2

rms, such as
the length noise of a filter cavity.

APPENDIX C: DERIVATIONS OF PASSIVE
TRANSMISSION RESPONSE

The response metrics for passive cavities of Eqs. (52)–(54)
can certainly be derived using Sec. IV, but the passivity
constraints provide an alternative derivation. This derivation
provides some meaningful insight as it can be done more
natively using cavity transfer functions hðΩÞ. This work
chooses to only represent two-photon matrices in the quad-
rature basis of q̂ðΩÞ and p̂ðΩÞ, rather than the sideband
basis used for âðΩÞ and â†ð−ΩÞ. One can transform between
the two using the A matrices defined below. For a passive
system, H can be calculated using only hðΩÞ, as

HðΩÞ ¼ A

�
hðþΩÞ 0

0 h�ð−ΩÞ

�
A−1 ðC1Þ

using the basis-changing matrices

A ¼ 1ffiffiffi
2

p
�
1 1

−i i

�
; A−1 ¼ 1ffiffiffi

2
p
�
1 i

1 −i

�
: ðC2Þ

For a passive system Γ ¼ 1, so Eq. (34) simplifies to

ηðΩÞSðϕ; rÞ ¼ jv⃗†HRðϕÞSðrÞj2: ðC3Þ

When hðΩÞ is reduced by loss, Eq. (C3) must be extended
to include T terms to couple in unsqueezed vacuum.
The passivity condition (51) includes every loss source
individually accounted, but they can be collected into the
complementary loss transfer function hlossðΩÞ,

Hloss ¼ A

�
hlossðþΩÞ 0

0 h�lossð−ΩÞ
�
A−1; ðC4Þ

1 ¼ HH† þ HlossH
†
loss: ðC5Þ

The conservation of phase space under the given assumptions
imposes the constraint

jhlossð�ΩÞj2 ¼ 1 − jhð�ΩÞj2: ðC6Þ

The total noise of Eq. (33) can then be expressed as

N ¼ v⃗†ðHRðϕÞSðrÞS†ðrÞRðϕÞ†H† þ HlossH
†
lossÞv⃗: ðC7Þ

Together, the efficiency η is calculated as

ð1 − ηÞ ¼ jv⃗†Hlossj2 ¼ 1 −
jhðþΩÞj2 þ jhð−ΩÞj2

2
: ðC8Þ

Now, for the remaining parameters, some factorizations into
magnitude and phase components are needed,

hð�ΩÞ ¼ jhð�ΩÞjeiθ� ; ðC9Þ

HðΩÞ ¼ A

� jhðþΩÞjeiθþ 0

0 jhð−ΩÞje−iθ−
�
A−1: ðC10Þ

The factorizations then enable an SVD-like decomposition
into common and differential magnitudes and phase,

CðΩÞ≡ jhðþΩÞjþ jhð−ΩÞj
2

; θCðΩÞ≡θþ−θ−
2

; ðC11Þ

DðΩÞ≡ jhðþΩÞj− jhð−ΩÞj
2

; θDðΩÞ≡θþþθ−
2

; ðC12Þ

HðΩÞ¼AeiθC
�ðCþDÞeiθD 0

0 ðC−DÞe−iθD
�
A−1: ðC13Þ

The rotation operator RðϕÞ is a result of phase in the
sideband picture, and allows the decomposition to be
reduced

RðϕÞ ¼ A

�
eiϕ 0

0 e−iϕ

�
A−1; ðC14Þ
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HðΩÞ ¼ eiθC
�
CRðθDÞ þ iDR

�
θD −

π

2

��
: ðC15Þ

Plugging this back into Eq. (C3) gives

N¼
				
�
0

1

�†
ðC1−DσÞRðθDþϕ−ζÞS

				2 σ¼
�
0 −i
i 0

�
:

ðC16Þ

Using ζ − ϕ ¼ θD for simplicity, this then gives the final
phase-quadrature power spectrum of

NðΩÞ ¼ C2e−2r þD2eþ2r þ ð1 − ηÞ ðC17Þ

¼ ηðð1 − ΞÞe−2r þ Ξeþ2rÞ þ ð1 − ηÞ; ðC18Þ

where the second line is a result of the following relations:

Ξ ¼ D2=η; η ¼ C2 þD2: ðC19Þ

Relaxing ζ − ϕ ¼ θD can be done to indicate the
squeezing angle dependence, but from the above relations,
Eqs. (52)–(54) follow.

APPENDIX D: DOUBLE CAVITY
APPROXIMATIONS

The transfer function equations (61)–(65) are a reduced
representation of a double cavity system designed for
resonant sideband extraction. Those equations give the
reflectivity factorized into roots, zeros and poles, from
which analytical expressions can be more easily manipu-
lated. Those roots represent a low-order approximation of
the response of two cavities, each with differing frequency
response. The interaction between the cavities from the
common mirror, the arm input mirror, causes a complicated
response that is sensitive to multiple scales of bandwidth,
delay time, and resonant enhancement. The reflectivity
transfer function of a single transverse mode can be
expressed exactly, using

rAðΩÞ ¼ ra −
Ta

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa

p
e−iΩ2La=cþiΨa

1 − ra
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa

p
e−iΩ2La=cþiΨa

; ðD1Þ

rSðΩÞ ¼ rs −
TsrAðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λs

p
e−iΩ2Ls=cþiΨs

1 − rsrAðΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λs

p
e−iΩ2Ls=cþiΨs

; ðD2Þ

where rS is the reflectivity of the combined cavity system
off of the signal recycling mirror with reflectivity rs. rA is
the reflectivity of the arm alone, ignoring the effect of the
coupling of the cavities. The phase shift terms Ψa;Ψs can
represent either length detunings or the Gouy phase of
higher-order modes. They are set to 0 for the fundamental
mode operating with resonant sideband extraction (RSE) in
the signal recycling cavity, as the phase terms for that

resonance condition are included in the expression
of Eq. (D2).
In LIGO’s RSE operating regime, Ta is small, to allow a

large buildup of arm power of the carrier field. Ts is large to
create a low-finesse cavity that only moderately widens
the arm bandwidth to be above the frequencies of astro-
physical signals. The combination of low and high cavity
finesses, as well as the discrepancy in the lengths of the arm
and SRC cavities, makes Taylor expansions or Padé
approximants of Eq. (D2) nontrivial to construct [38].
Furthermore, approximants tend to operate only in a limited
parameter regime. To create the approximations used in this
work, the following relations are used:

Ta ¼ 1 − r2a ; Ts ¼ 1 − r2s ; ðD3Þ

ra ¼ 1 − ua; rs ¼ 1 − us; ðD4Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa

p
≈ 1 − Λa=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λs

p
≈ 1 − Λs=2: ðD5Þ

The exponential term for the propagation delay is then
substituted for a Padé approximant,

e−iΩ2L=c ≈
c − iΩL
cþ iΩL

: ðD6Þ

From there, Eq. (D1) is substituted into Eq. (D2) and
expanded using computer algebra software. Now, terms are
progressively dropped and the transfer function is tested
against the exactly calculated one, maintaining the magni-
tude and phase response as best as possible, even when the
loss terms Λfg are nonzero. This leads to the following
second-order rational form:

rSðΩÞ ≈
a2s2 þ a1sþ a0
b2s2 þ b1sþ b0

; s ¼ iΩ; ðD7Þ

a2 ¼ 2LaLs; a0 ¼ c2
�
ua −

Λaus
4

�
; ðD8Þ

b2 ¼ 2LaLs; b0 ¼ c2
�
ua þ

Λaus
4

�
; ðD9Þ

a1 ¼ cLa

�
Λs

2

�
1 −

ua
2

�
− us

�
; ðD10Þ

b1 ¼ cLa

�
Λs

2

�
1 − us −

ua
4

�
þ us

�
: ðD11Þ

The rational form is then factored into roots using an
approximation of the quadratic formula. Notably, the a1
and b1 terms have different numbers of summed terms,
leading to the poles and zeros also having different
numbers of terms. By splitting the roots into bandwidth,
γ, and loss, λ, contributions, the presence of the loss-related
terms in the poles and zeros is symmetrized,
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γA − λA ≈ −
a0
a1

; γA þ λA ≈ −
b0
b1

; ðD12Þ

γS − λS ≈ −
a1
a2

þ a0
a1

; γS þ λS ≈ −
b1
b2

þ b0
b1

: ðD13Þ

Solving for the individual loss and bandwidth factors for
each cavity then leads to Eqs. (61)–(64), and plugging them
back into Eq. (D7) leads to Eq. (65).

APPENDIX E: MULTIPLE TRANSVERSE MODE
INTERFEROMETER MODEL

The effort of this paper is primarily to produce simplified
models of the squeezing response incorporating effects
from transverse mismatch and radiation pressure. To
validate those models, it is useful to compare against a
more complete, though opaque, model that includes the
exact cavity response with radiation pressure, detuning,
losses, and transverse modal mismatch. With the exception
of transverse mismatch, such a model is established and
widely used for noise modeling of LIGO-like interferom-
eters [14,37]. This model is succinctly derived here in a
manner that allows transverse mismatch to be incorporated.
For simplicity, and to provide a more direct comparison,
this is done for a double cavity representing a perfectly
symmetric interferometer. Future work should simulate
interferometers with arm imbalances to compare against
this exact case, but that is beyond the scope chosen here.
To incorporate all of the listed elements in an exact

model, a product space is necessary to maintain the two-
photon response of each optical element across multiple
intercoupled transverse modes. Here, only two such trans-
verse modes are used: the fundamental Gaussian mode and
a single higher-order mode such as the LG1 for beam
mismatch, or the HG01 for a misalignment. The interaction
between the modes conserves the phase space and does not
leak into yet higher modes. Similarly to Eq. (72), this is not
a perfectly physical choice, but a convenient one that is
valid for small mixing between the modes. The squeezing,
rotation, and mode mixing matrices in this product space
are defined below in terms of their two-photon definitions.
The rotation matrix takes on two parameters: one common
rotation ϕ, representing a phase shift of both modes, and
one ψ for the rotation solely of the higher-order mode
(HOM),

S
⇔
ðrÞ≡

�
SðrÞ 0

0 1

�
; R

⇔ðϕ;ψÞ≡
�
RðϕÞ 0

0 RðψÞRðϕÞ

�
:

ðE1Þ

The mismatch loss coupling matrix U
⇔

maintains the same
parameters as before Eq. (72). The HOM phase shift term
must be converted into a quadrature rotation, and the
common phase ϕ is omitted,

U
⇔ðϒ;ψÞ≡

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒ

p
1 −

ffiffiffiffi
ϒ

p
RðψÞffiffiffiffi

ϒ
p

Rð−ψÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒ

p
1

�
: ðE2Þ

Additionally, basis vectors in this space are defined to
simplify the expression of single-element matrices as well
as create projections for observables,�

e
⇒

q0 e
⇒

p0 e
⇒

q1 e
⇒

p1

�
≡ 1

⇔
: ðE3Þ

As in the scalar transfer function case of Appendix D, the
reflectivity of the interferometer double cavity system from
the signal recycling mirror is needed. To make analogous
equations to Eqs. (D1) and (D2), most of the same scalar
factors are needed, but now in the product space,

r
⇔
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ta

p
· 1
⇔
; t

⇔

a ¼
ffiffiffiffiffi
Ta

p
· 1
⇔
; ðE4Þ

r
⇔
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Te

p
· 1
⇔
; t

⇔

e ¼
ffiffiffiffiffi
Te

p
· 1
⇔
; ðE5Þ

r
⇔
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ts

p
· 1
⇔
; t

⇔

s ¼
ffiffiffiffiffi
Ts

p
· 1
⇔
; ðE6Þ

η
⇔
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa

p
· 1
⇔
; η

⇔
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λs

p
· 1
⇔
; ðE7Þ

L
⇔

a ¼ e−iΩLa=cR
⇔ð−kΔLa;ψ aÞ; L

⇔

o ¼ R
⇔ðπ=2; 0Þ; ðE8Þ

L
⇔

s ¼ e−iΩLs=cR
⇔ð−kΔLs − π=2;ψ sÞ: ðE9Þ

The transmission delay matrices L
⇔

a and L
⇔

s use the identity
(C14) in this larger space. For them, the HOM picks up the
single-pass Gouy phase of the arm ψ a and of the SRC ψ s.
The terms ΔLa and ΔLs are microscopic detuning lengths
for each cavity and add to the nominal lengths.
The final new component of this double cavity matrix

model is the radiation pressure. This is added ad hoc as a
modification to the reflectivity of each of the arm cavity
mirrors. It couples the amplitude and phase quadratures
only in the fundamental mode, as that is the mode in which
the large carrier power PA is resonating in each arm. The

modified reflectivities are ρ
⇔
a and ρ

⇔
e for the input and end

mirror respectively,

ρ
⇔
a ¼ r

⇔
a

�
1
⇔
− ð1 − TaÞ8k · χðΩÞ ·

PA

c
· e
⇒

p0 e
⇒†

q0

�
; ðE10Þ

ρ
⇔
e ¼ r

⇔
e

�
1
⇔
− ð1 − TeÞ8k · χðΩÞ ·

PA

c
· e
⇒

p0 e
⇒†

q0

�
: ðE11Þ

The mode mismatch of this model can be added not only
between the external elements of the squeezing, interfer-
ometer and readout as shown in Fig. 5, but also within the
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interferometer. The input and output mismatch matrices of

Sec. VI are given by U
⇔

I and U
⇔

O, while the mismatch
between the signal recycling cavity and the arm cavity is

given by U
⇔

A. These matrices act as basis transformations
into and out of the respective component basis, where the
mismatch loss of the fundamental is given by an ϒfg
parameter, and there is a (generally unknown) mismatch
phasing ψfg,

U
⇔

A¼U
⇔ðϒA;ψAÞ; U

⇔

I¼U
⇔ðϒI;ψ IÞ; U

⇔

O¼U
⇔ðϒO;ψOÞ:

ðE12Þ

The following Eqs. (E13)–(E16) are the extensions of
Eqs. (D1) and (D2) into the product space. They are solved
using noncommutative Gaussian elimination first on the

arm, and then on the signal recycling cavity. F
⇔

A is the
round-trip closed-loop propagator from the end mirror back
to itself via the input mirror. It is defined to enter at a
specific point, immediately after the end mirror reflectivity

ρ
⇔
e, in the round-trip propagation sequence of the arm cavity

reflectivity r
⇔
A. Given the placements of the U

⇔

A factors, the

arm cavity reflectivity, r
⇔
A, is in the modal basis of the

signal recycling cavity,

F
⇔

A ¼ ð1
⇔
− η

⇔
aρ
⇔
eL
⇔

aρ
⇔
aL
⇔

aÞ
−1
; ðE13Þ

r
⇔
A ¼ U

⇔−1
A ðr⇔a − t

⇔

aL
⇔

aF
⇔

Aη
⇔
aρ
⇔
eL
⇔

a t
⇔

aÞU
⇔

A; ðE14Þ

F
⇔

S ¼ ð1
⇔
þ η

⇔
s r
⇔
AL
⇔

s r
⇔
sL
⇔

sÞ
−1
; ðE15Þ

r
⇔
S ¼ U

⇔−1
I L

⇔

oðr⇔s þ t
⇔

sL
⇔

sF
⇔

Sη
⇔
s r
⇔
AL
⇔

s t
⇔

sÞL
⇔

oU
⇔

I: ðE16Þ

The propagator and reflectivity of the signal recycling
cavity are constructed similarly to the arm and, like
Eq. (D2), use the arm cavity reflectivity instead of the
arm input mirror reflectivity. This follows from the par-
ticular ordering chosen during Gaussian elimination. The

placements of U
⇔

I indicate that r
⇔
S is in the basis of the

squeezer input beam.
It is noteworthy that Eqs. (E15) and (E16) have a positive

sign, whereas the equivalent terms in Eq. (D2) are negative.
This is due to the π=2 phase term in Eq. (E9) which
implements the convention of resonant sideband extraction,
rather than being absorbed into the expression as done for
Eq. (D2). This factorization is consequential as the phase
shift from RSE rotates the quadratures used to define
squeezing and radiation pressure effects. Here, the π=2

quadrature rotation is superficially removed using the L
⇔

o

term. This ensures r
⇔
S is in the form of Eq. (45), albeit with

an overall sign flip that can be ignored by adding a �π
phase shift before or after the interferometer. For compari-

son, the expressions for r
⇔
S calculated in Ref. [37] follow

the convention L
⇔

o ¼ 1
⇔
. The superficial term L

⇔

o affects the
preferred choice in defining the local oscillator and signal
quadrature at the readout, discussed below.

Along with the reflectivity, all of the H
⇔

propagation and

fT⇔g loss matrices of Sec. IV must be constructed. For
brevity, the broadband input and output losses from ΛI and
ΛO are not included, but are simple to incorporate. Instead,
the internal interferometer losses from the arm and signal
recycling cavities are calculated using the transmission
matrices

T
⇔

R;S ¼ t
⇔

S

ffiffiffiffiffi
Λs

p
; t

⇔

S ¼ U
⇔−1
I L

⇔

o t
⇔

sL
⇔

sF
⇔

Sη
⇔
s; ðE17Þ

T
⇔

R;A ¼ t
⇔

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TeþΛa

p
; t

⇔

A¼ t
⇔

SU
⇔−1
A t

⇔

aL
⇔

aF
⇔

Aη
⇔
a: ðE18Þ

The output mode cleaner is applied to the reflectivity to

create the total propagation of squeezing H
⇔
. Because of

the output mode cleaner, the homodyne readout projects
solely in the fundamental mode. As a result, the effective
observation vector m⃗ retains only two elements and is
directly applicable to the formulas of Sec. IV,

H
⇔

R ¼U
⇔

O r
⇔
S; mq¼ v

⇒†
H
⇔
e
⇒

q0; mp¼ v
⇒†

H
⇔
e
⇒

p0: ðE19Þ

Again, H
⇔

R ¼ H
⇔

is assumed here for simplicity, but input
and output elements and their loss terms can be included.
While m⃗ still has only two elements, the vectors in the
norms for the total noise gain are still in the product space,
here dimension four. This sums the higher-order mode
terms as contributors to loss, decreasing the efficiency in
the computation η ¼ jm⃗j2=Γ,

ΓðΩÞ ¼ jv⇒†
H
⇔ j2 þ jv⇒†

T
⇔

R;Aj
2 þ jv⇒†

T
⇔

R;Sj
2

: ðE20Þ

The local oscillator vector v
⇒†

must also be defined in the
context of the interferometer and the optical quadratures
established by the circulating pump light. For a Michelson
interferometer, the fringe light that leaks out of the beam
splitter is in the phase quadrature with respect to the
circulating light in the arms, which is in the positive
amplitude quadrature. This fringe is nominally ζ ¼ 0 by
the conventions used in the paper. The fringe light
circulates within the SRC and is emitted with the signal.

It experiences the phase shift of t
⇔

S, computed at Ω ¼ 0

with χ ¼ 0. For an SRC in RSE and using the L
⇔

o of

L. MCCULLER et al. PHYS. REV. D 104, 062006 (2021)

062006-24



Eq. (E8) no rotation to v
⇒†

is applied by t
⇔

S when ΔLs ¼ 0.
In other conventions, such as Ref. [37], the LO angle
definition changes with the detuning ΔLs. For LIGO’s O3
configuration using RSE, the SRC is antiresonant where

Ω < γA. This decreases the sensitivity of v
⇒†

to ΔLs by
approximately Ts=4, so the LO correction is small for
LIGO’s current configuration. When considering larger
detunings or resonant SRC configurations, one should
account for the SRC cavity if using a DC fringe rather
than a balanced homodyne readout that has a configurable
LO angle.
In an imperfect interferometer with contrast defect, the

LO angle ζ ≈ 0 for the Michelson fringe at the beam splitter
can be nonzero, even without accounting for the SRC. The
defect causes some amplitude quadrature from the arms to
leak onto the phase quadrature fringe light. Combining the
LO angle and the SRC cavity effect leads to this definition

of v
⇒†

:

v
⇒† ¼

0
B@ t

⇔

S e
⇒

p0

jt⇔S e
⇒

p0j

1
CA

†

R
⇔ðζ; 0Þ: ðE21Þ

Where t
⇔

S is evaluated at Ω ¼ 0 and using χ ¼ 0.
From the previous expressions, the noise NðΩÞ can be

entirely calculated, so squeezing can be examined. With all
the machinery, it is also useful to determine the optical gain

and signal sensitivity. Below, s
⇒
is the signal field generated

by displacement modulations xðΩÞ. Displacements create
phase modulations in the fundamental mode (in the arm
cavity basis) at the end mirror. The factor of 1=

ffiffiffi
2

p
is from

the presence of the beam splitter. The field magnitude in the
transverse mode and quadrature observed by the homodyne
is given by sðΩÞ,

sðΩÞ¼ v
⇒†

s
⇒
; s

⇒¼ 1ffiffiffi
2

p U
⇔

O t
⇔

A e
⇒

p0 ·2k

ffiffiffiffiffiffiffi
PA

ℏω

r
xðΩÞ: ðE22Þ

The signal sensitivity can then be used to define the optical
gain and sensitivity in terms of spectral density as per

Sec. II A, Eq. (16). Since s and s
⇒

are in units of quanta/
second, rather than Watts, the factor of 1=2 in G represents
the half quanta of vacuum noise,

gðΩÞ¼ v
⇒†

U
⇔

O t
⇔

A e
⇒

p0; GðΩÞ¼ 1

2

�
LA

dsðΩÞ
dxðΩÞ

�
−2
: ðE23Þ

One final note is that the signal modulations in the arms
drives the phase quadrature from the circulating amplitude

quadrature pump light, supplying the e
⇒

p0 term. It is then

modified by the t
⇔

A transfer function which includes the

SRC term t
⇔

S, similarly to the LO definition above. Both

the signal and LO experience only a small rotation from t
⇔

S

from small detunings ΔLs when using RSE and the L
⇔

o
convention chosen in Eq. (E8). While both the signal and

LO are affected by the SRC through t
⇔

S, the LO only
experiences it at Ω ¼ 0 and χ ¼ 0 whereas the signal has a
frequency-dependent effect.

APPENDIX F: RADIATION PRESSURE REGION

The previous Appendix E derived the interferometer
squeezing and signal response in full generality. Due to its
generality, the full expressions obscure the physics of the
ideal and nearly ideal cases. This Appendix specifically
investigates the interaction of external mode mismatch
on the QRPN, where the interferometer itself is lossless
and perfectly on resonance. The coherent effects of
modal mismatch and the coherent effects in QRPN could
potentially provide an alternative explanation of the
variation of Γ required to explain the loss measurement
in the LLO data.
This section concludes that is not the case, and that the

LO angle ζ ≠ 0 variation is a more valid explanation. This
derivation also indicates some limitations in using squeez-
ing and QRPN as a diagnostic of the arm power, as the
observed ΓðΩÞ and θðΩÞ do have some dependence on ϒI
and ϒO, and their dependence mimics lower arm power in
measurements.
To model the ideal interferometer with mismatch, the

matrices of Sec. IVA simply need to be extended into the
product space of Appendix E to incorporate additional

transverse modes. The reflectivity matrix r
⇔
S is naturally

in a lower diagonal form when the interferometer is on
resonance and has no mismatch, as all of the matrices
entering in Eqs. (E13)–(E16) are either diagonal or triangu-
lar. Upper and lower triangular forms do not mix, so the
matrix inverses simplify greatly, as each diagonal in the
inverse becomes a formula like Eq. (D2). In the inverses,
the off-diagonal term for the radiation pressure interaction
picks up the optical gain to become Eq. (12). Together, the
ideal interferometer reflectivity for the squeezing field
becomes

r
⇔
SðΩÞ ¼

2
666664

r2ðΩÞ 0 0 0

−KðΩÞ r2ðΩÞ 0 0

0 0 1 0

0 0 0 1

3
777775: ðF1Þ

Mode mismatch is then added similarly to Sec. VI, except
using the product space representation,
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H
⇔

RðΩÞ ¼ U
⇔ðϒO;ψOÞG

⇔
U
⇔†ðϒI;ψ IÞr

⇔
SU
⇔ðϒI;ψ IÞ: ðF2Þ

The resulting expressions are complicated, as all the
interactions are coherent. r2ðΩÞ is approximated as 1 in
Eq. (F1) to simplify the expressions below, valid at low

frequencies. Here, the row of H
⇔

R corresponding to the
phase quadrature of the fundamental mode is presented, as
that is the only relevant output to calculate squeezing in the
ideal case, using phase quadrature readout v⃗† ¼ e⃗†p0,

e
⇒†

p0H
⇔

RðΩÞe
⇒

q0 ¼−K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϒO

p
ð1−ϒIþβ

ffiffiffiffiffiffiffiffiffiffiffiffi
ϒIϒO

p
cosðψRÞÞ

¼−K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϒO

p �
1−

ϒR

4

�
; ðF3Þ

e
⇒†

p0H
⇔

RðΩÞe
⇒

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϒO

p
; ðF4Þ

e
⇒†

p0H
⇔

RðΩÞe
⇒

q1 ¼K
ffiffiffiffiffi
ϒI

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−ϒI

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϒO

p
þKϒI

ffiffiffiffiffiffiffi
ϒO

p
cosðψRÞ−

ffiffiffiffiffiffiffi
ϒO

p
sinðψRÞ;ðF5Þ

e
⇒†

p0H
⇔

RðΩÞe⇒p1 ¼ −
ffiffiffiffiffiffiffi
ϒO

p
cosðψRÞ: ðF6Þ

These four terms can be separated into the purely two-
photon matrix form of Sec. IV, appearing as�

HR ΛR

· ·

�
≡H

⇔

RðΩÞ: ðF7Þ

These can then be used to compute the squeezing response
metrics:

ηðΩÞΓðΩÞ ¼ ð1 −ϒOÞ
�
1þ jKðΩÞj2

�
1 −

ϒR

2

��
; ðF8Þ

ΓðΩÞ ¼ je⇒†
p0H

⇔

RðΩÞj
2 ¼ 1þ jKðΩÞj2ð1 −ϒFÞ; ðF9Þ

ηRðΩÞ ¼ ð1 −ϒOÞ
1þ jKðΩÞj2ð1 −ϒR=2Þ
1þ jKðΩÞj2ð1 −ϒFÞ

; ðF10Þ

θRðΩÞ ¼ arctan

�
ℜ

�
−KðΩÞ
r2ðΩÞ

��
1 −

ϒR

4

��
: ðF11Þ

Notably, the transverse mismatch losses entail certain
adjustments needed to the noise gain ΓðΩÞ and observation
angle θðΩÞ. The K term in Γ is diminished by the readout
losses in exactly the same manner that the signal experi-
ences. This corresponds to how the quantum noise in
amplitude causes force and displacement that mimics
signals, so the quantum noise gain must be enhanced or
reduced to the same degree.

θðΩÞ behaves differently, as it coherently reacts to
interactions both before and after the interferometer. The
influence of mismatch losses bias its estimate of K, and
thus the arm power, downwards. This happens because the
mode mismatch moves some amount of squeezing out of
the interferometer mode, preventing it from experiencing
K, and then moves it back. This effectively causes K to
appear reduced.
The efficiency ηR is also affected by the mismatch loss

and has a slightly different adjustment of itsK terms between
the numerator and denominator. This causes the orange exact
model curves in the middle plots of loss in Fig. 3 to wiggle
upwards at low frequencies. This wiggle does not have
particular physical significance, and can be interpreted as
evidence that ηΓ is a more fundamentally useful metric
than η or Γ alone. Notably, ηΓ has the same dependence on
mismatch from ϒR, per factor of K, as θ. This reflects that
ηΓ is sensitive to the coherence between pre- and post-
interferometer mismatch interactions similarly to θ and
unlike Γ, which is only sensitive to post-interferometer
mismatch.

APPENDIX G: PHASE AND SIGN CONVENTIONS

This work uses several implicit or subtle conventions in
representing matrices and transfer functions of the optical
quadratures to arrive at its simplified results. Among these
conventions are the optical phase shifts upon reflecting
from cavities as well as the phase conventions for the
squeezing and local oscillator. This section specifies these
conventions.
First, the squeezing and rotation phase is established in

Eq. (32), which applies squeezing to the phase quadrature.
The rotation matrix is related to the optical delay. This
paper assumes the Fourier delay convention âðωÞ ¼R∞
−∞ aðtÞe−iωtdt that is standard in control systems literature.
That convention, combined with the definition of A in
Eq. (C2) and the relation (C14) establishes that increasing a
path length L causes a negative phase rotation Rð−kLÞ of
the quadratures, along with a phase delay scaling with Ω.
Positive amplitude quadrature fluctuations cause a pos-

itive force to push the mirrors, increasing cavity length
when χ > 0. This implies an increased delay resulting in
the negative sign on −K relative to the diagonals in
Eq. (45), (E10), and (F1).
A positive squeezing angle ϕ is from shortening the path

length between the squeezer and readout. For balanced
homodyne readout, the LO convention of Eq. (35) implies
that the LO rotates with positive ζ by either shortening the
interferometer to readout length or by increasing the length
of the LO path. For Michelson fringe readout, the sign of ζ
depends on which side of the fringe the interferometer is on
and which arm has lower loss. Where jKðΩÞj ≪ 1, dθdζ ¼ 1,
so the squeezing angle ϕ should move opposite the LO
angle ζ to maintain squeezing.
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Finally, and somewhat critically, are the conventions and
meaning of the signs of Eqs. (56) and (65). These signs are
relevant in distinguishing Eq. (83) from Eq. (84). The sign
of a reflection from a cavity is dependent on the phase
convention used for the mirror transmission and reflection
from the two surfaces. This work uses the convention that
only the reflection from the HR surface accumulates a π

phase shift and the others are not shifted. Using an alternate
convention applies a phase or sign shift consistently to most
r and K terms. Most measurable quantities only depend on
the relative phase between the two quadratures or between
the fundamental and higher-order modes. Critically, rðΩÞ
and rhomðΩÞ of Eq. (73) shift together, so the formulas of
Sec. VI are not dependent of the chosen convention.
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