170 research outputs found

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory

    Get PDF

    A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources

    Get PDF

    The 2021 Open-Data release by the Pierre Auger Collaboration

    Get PDF
    The Pierre Auger Observatory is used to study the extensive air-showers produced by cosmic rays above 1017^{17} eV. The Observatory is operated by a Collaboration of about 400 scientists, engineers, technicians and students from more than 90 institutions in 18 countries. The Collaboration is committed to the public release of their data for the purpose of re-use by a wide community including professional scientists, in educational and outreach initiatives, and by citizen scientists. The Open Access Data for 2021 comprises 10% of the samples used for results reported at the Madison ICRC 2019, amounting to over 20000 showers measured with the surface-detector array and over 3000 showers recorded simultaneously by the surface and fluorescence detectors. Data are available in pseudo-raw (JSON) format with summary CSV file containing the reconstructed parameters. A dedicated website is used to host the datasets that are available for download. Their detailed description, along with auxiliary information needed for data analysis, is given. An online event display is also available. Simplified codes derived from those used for published analyses are provided by means of Python notebooks prepared to guide the reader to an understanding of the physics results. Here we describe the Open Access data, discuss the notebooks available and show material accessible to the user at https://opendata.auger.org/

    A Novel Tool for the Absolute End-to-End Calibration of Fluorescence Telescopes -The XY-Scanner

    Get PDF

    A tau scenario application to a search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    corecore