18 research outputs found

    Macrophage Migration Inhibitory Factor: A Multifunctional Cytokine in Rheumatic Diseases

    Get PDF
    Macrophage migration inhibitory factor (MIF) was originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibited the random migration of macrophages. MIF is now recognized to be a multipotent cytokine involved in the regulation of immune and inflammatory responses. Moreover, the pivotal nature of its involvement highlights the importance of MIF to the pathogenesis of various inflammatory disorders and suggests that blocking MIF may be a useful therapeutic strategy for treating these diseases. This paper discusses the function and expressional regulation of MIF in several rheumatic diseases and related conditions

    Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal

    Get PDF
    Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase–mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.publishedVersio

    A Disintegrin and Metalloprotease 15 is Expressed on Rheumatoid Arthritis Synovial Tissue Endothelial Cells and may Mediate Angiogenesis

    No full text
    A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored ADAM15 (ADAM15) expression in RA synovial tissues, immunohistochemistry was performed. To examine the role of ADAM15 in angiogenesis, we performed in vitro Matrigel assays and monocyte adhesion assays using human umbilical vein endothelial cells (HUVECs) transfected with ADAM15 siRNA. Finally, to investigate whether angiogenic mediators were affected by ADAM15, cytokines in ADAM15 siRNA-transfected HUVEC-conditioned medium were measured. ADAM15 was significantly higher in RA serum than in NL serum. ADAM15 was also expressed on RAST endothelial cells. ADAM15 siRNA-treated HUVECs had decreased EC tube formation in response to RA synovial fluids compared with non-treated HUVECs. The adhesion index of ADAM15 siRNA-transfected HUVECs was significantly lower than the adhesion index of control siRNA-transfected HUVECs. ENA-78/CXCL5 and ICAM-1 were decreased in tumor necrosis factor (TNF)-α-stimulated ADAM15 siRNA-transfected HUVEC-conditioned medium compared with TNF-α-stimulated control siRNA-transfected HUVEC-conditioned medium. These data show that ADAM15 plays a role in RA angiogenesis, suggesting that ADAM15 might be a potential target in inflammatory diseases such as RA

    Increased serum levels of macrophage migration inhibitory factor (MIF) in patients with microscopic polyangiitis

    No full text
    Hirohito Kanemitsu, Mizuho Matsunawa, Kuninobu Wakabayashi, Michihito Sato, Ryo Takahashi, Tsuyoshi Odai, Takeo Isozaki, Nobuyuki Yajima, Yusuke Miwa, Tsuyoshi KasamaDivision of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, JapanObjective: To test the hypothesis that macrophage migration inhibitory factor (MIF) is involved in the disease activity of systemic vasculitis.Methods: Patients with systemic vasculitis were divided into three groups based on the size of the affected vessels. Microscopic polyangiitis (MPA) was considered as small vessel vasculitis (SVV), polyarteritis nodosa as medium-sized vessel vasculitis (MVV), and giant cell arteritis and Takayasu arteritis as large vessel vasculitis (LVV). Sera from patients with systemic vasculitis and healthy individuals were collected, and MIF levels were measured using an enzyme-linked immunosorbent assay. Disease activity of vasculitis was assessed using the Birmingham Vasculitis Activity Score (BVAS).Results: Serum MIF levels were significantly higher in the vasculitis patients than in healthy individuals. Among the vasculitis patients, MIF levels were significantly higher in patients in the SVV group (median; 4161.7 pg/ml) than in the other groups (MVV; 1443.2 pg/ml and LVV; 1576.7 pg/ml). In patients with MPA, a positive correlation was observed between serum MIF levels and CRP levels and disease activity (BVAS). Notably, serum MIF levels were significantly diminished after clinical improvement.Conclusions: Our findings suggest that MIF may have an important role in small vessel vasculopathy and serve as a useful serologic marker of MPA disease activity.Keywords: macrophage migration inhibitory factor, systemic vasculitis, microscopic polyangiitis, cytokin

    Critical Involvement of Cytokines and Chemokines in the Pathogenesis of Rheumatoid Vasculitis

    No full text
    Vasculitis in rheumatoid arthritis (rheumatoid vasculitis) has a heterogeneous clinical presentation that includes skin disorders, neuropathy, eye symptoms and systemic inflammation. The molecular mechanisms underlying rheumatoid vasculitis are not fully understood; however, the importance of a chronic imbalance of the cytokines and chemokines involved in orchestrating inflammatory responses is well established in patients with rheumatoid arthritis, and similar dysregulation of these mediators has been suggested to occur in patients with rheumatoid vasculitis. In the present review, we discuss the involvement of cytokines and chemokines in the pathogenesis of rheumatoid vasculitis and evaluate their utility as laboratory parameters of active vasculitic disease. Also the involvement of adhesion molecules is discussed

    Synergistic induction of CX3CL1 by TNF alpha and IFN gamma in osteoblasts from rheumatoid arthritis: involvement of NF-kappa B and STAT-1 signaling pathways

    No full text
    Takeo Isozaki, Tsuyoshi Kasama, Ryo Takahashi, Tsuyoshi Odai, Kuninobu Wakabayashi, Hirohito Kanemitsu, Kyoko Nohtomi, Hiroko T Takeuchi, Satoshi Matsukura, Masakazu TezukaDivision of Rheumatology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan, and the Department of Orthopedics, Denencyofu Central Hospital, Tokyo, JapanAbstract: To explore the regulation of CX3CL1 in inflammatory bone diseases, CX3CL1 expression by osteoblasts (OB) was examined. Human OB isolated from rheumatoid arthritis (RA) patients, osteoarthritis patients, and normal individuals were incubated in the presence of cytokines. Soluble CX3CL1 levels were determined with an enzyme-linked immunosorbent assay. Expression of CX3CL1 mRNA was examined using quantitative real-time polymerase chain reaction. Although tumor necrosis factor (TNF)-α or interferon (IFN)-γ alone RA OB induced negligible CX3CL1 secretion, the combination of TNF-α and IFN-γ induced dramatic increases in both soluble CX3CL1 protein and mRNA transcripts. This synergistic effect was more pronounced in OB from RA than in OB from either osteoarthritis or normal individuals. The expression of CX3CL1 was markedly reduced by specific inhibitors of the nuclear factor-κB (NF-κB) or STAT-1 transcription factor. These findings suggest that osteoblasts are an important cellular source of CX3CL1 and may play roles in inflammatory bone/joint diseases.Keywords: osteoblast, CX3CL1, chemokine, NF-κB, STAT-
    corecore