76 research outputs found

    BMPR-II is Dispensable for Formation of the Limb Skeleton.

    Get PDF
    Initiation of BMP signaling is dependent upon activation of Type I BMP receptor by constitutively active Type II BMP receptor. Three Type II BMP receptors have been identified; Acvr2a and Acvr2b serve as receptors for BMPs and for activin-like ligands whereas BMPR-II functions only as a BMP receptor. As BMP signaling is required for endochondral ossification and loss of either Acvr2a or Acvr2b is not associated with deficits in limb development, we hypothesized that BMPR-II would be essential for BMP signaling during skeletogenesis. We removed BMPR-II from early limb mesoderm by crossing BMPR-II floxed mice with those carrying the Prx1-Cre transgene. Mice lacking limb expression of BMPR-II have normal skeletons that could not be distinguished from control littermates. From these data, we conclude that BMPR-II is not required for endochondral ossification in the limb where loss of BMPR-II may be compensated by BMP utilization of Acvr2a and Acvr2b

    BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction With Acvr2b.

    Get PDF
    Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair. However, the role of BMP in the maintenance of adult bone mass is not well understood. Targeted disruption of BMP3 in mice results in increased trabecular bone formation, whereas transgenic overexpression of BMP3 in skeletal cells leads to spontaneous fracture, consistent with BMP3 having a negative role in bone mass regulation. Here we investigate the importance of BMP3 as a mediator of BMP signaling in the adult skeleton. We find that osteoblasts (OBL) and osteocytes are the source of BMP3 in adult bone. Using in vitro cultures of primary bone marrow stromal cells, we show that overexpression of BMP3 suppresses OBL differentiation, whereas loss of BMP3 increases colony-forming unit fibroblasts and colony-forming unit OBL. The ability of BMP3 to affect OBL differentiation is due to its interaction with activin receptor type 2b (Acvr2b) because knockdown of endogenous Acvr2b in bone marrow stromal cells reduces the suppressive effect of BMP3 on OBL differentiation. These findings best fit a model in which BMP3, produced by mature bone cells, acts to reduce BMP signaling through Acvr2b in skeletal progenitor cells, limiting their differentiation to mature OBL. Our data further support the idea that endogenous BMPs have a physiological role in regulating adult bone mass

    The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein–induced bone formation

    Get PDF
    Osteoporosis is a major health problem; however, the mechanisms regulating adult bone mass are poorly understood. Cas-interacting zinc finger protein (CIZ) is a nucleocytoplasmic shuttling protein that localizes at cell adhesion plaques that form where osteoblasts attach to substrate. To investigate the potential role of CIZ in regulating adult bone mass, we examined the bones in CIZ-deficient mice. Bone volume was increased and the rates of bone formation were increased in CIZ-deficient mice, whereas bone resorption was not altered. CIZ deficiency enhanced the levels of mRNA expression of genes encoding proteins related to osteoblastic phenotypes, such as alkaline phosphatase (ALP) as well as osterix mRNA expression in whole long bones. Bone marrow cells obtained from the femora of CIZ-deficient mice revealed higher ALP activity in culture and formed more mineralized nodules than wild-type cells. CIZ deficiency enhanced bone morphogenetic protein (BMP)–induced osteoblastic differentiation in bone marrow cells in cultures, indicating that BMP is the target of CIZ action. CIZ deficiency increased newly formed bone mass after femoral bone marrow ablation in vivo. Finally, BMP-2–induced bone formation on adult mouse calvariae in vivo was enhanced by CIZ deficiency. These results establish that CIZ suppresses the levels of adult bone mass through inhibition of BMP-induced activation of osteoblasts

    Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs

    Get PDF
    AbstractBackground aimsTransplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair process in a pig modelMethodsThe chondrogenic potential of the porcine MSCs was compared in vitro. Cartilage defects were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs were injected into the defect, and the knee was kept immobilized for 10min before wound closure. To visualize the actual delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP) pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs were injected and observed for 10min under arthroscopic control. The defects were analyzed sequentially arthroscopically, histologically and by magnetic resonance imaging (MRI) for 3 monthsResultsSynovial MSCs had a higher chondrogenic potential in vitro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and membrane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI revealed a better outcome in the MSC-treated knees than in the non-treated control kneesConclusionsLeaving a synovial MSC suspension in cartilage defects for 10min made it possible for cells to adhere in the defect in a porcine cartilage defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation of synovial MSCs

    Revista complutense de educación

    Get PDF
    Resumen basado en el de la publicaciónSe lleva a cabo una revisión general del procedimiento cloze, procedimiento que es ampliamente conocido y utilizado como instrumento de evaluación de la lectura en los países de habla inglesa pero que apenas es conocido y empleado en España. Dicha revisión hace referencia tanto a los aspectos metodológicos relacionados con dicho procedimiento como a los distintos usos para los que puede emplearse en el campo de la evaluación de la lectura.ES

    Genetic Analysis of the Roles of BMP2, BMP4, and BMP7 in Limb Patterning and Skeletogenesis

    Get PDF
    Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis

    β-Tricalcium Phosphate Micron Particles Enhance Calcification of Human Mesenchymal Stem Cells In Vitro

    Get PDF
    β-Tricalcium phosphate (β-TCP) micron particles whose diameters range from 1 μm to 10 μm have been recently developed, however, their biological effects remain unknown. We investigated the biological effects of β-TCP micron particles on proliferation, cytotoxicity, and calcification of human synovial mesenchymal stem cells (MSCs). MSCs were cultured without dexamethasone, β-glycerophosphate, or ascorbic acid. 1.0 mg/mL β-TCP micron particles inhibited proliferation of MSCs significantly and increased dead cells. In the contact condition, 0.1 mg/mL β-TCP micron particles promoted calcification of MSCs evaluated by alizarin red staining and enhanced mRNA expressions of runx2, osteopontin, and type I collagen. In the noncontact condition, these effects were not observed. 0.1 mg/mL β-TCP micron particles increased calcium concentration in the medium in the contact condition, while 1.0 mg/mL β-TCP micron particles decreased calcium and phosphorus concentrations in the medium in the noncontact condition. By transmission electron microscopy, β-TCP micron particles were localized in the phagosome of MSCs and were dissolved. In conclusion, β-TCP micron particles promoted calcification of MSCs and enhanced osteogenesis-related gene expressions in vitro
    corecore