20 research outputs found

    Teacher–researcher partnership in the translation and implementing of PALS (Peer‐Assisted Learning Strategies): An international perspective

    Get PDF
    Funding Information: We would like to thank the schools, teachers and students who have alongside us developed PALS for each international context outlined. Publisher Copyright: © 2022 The Authors. Journal of Research in Reading published by John Wiley & Sons Ltd on behalf of United Kingdom Literacy Association.Peer-Assisted Learning Strategies (PALS) is a class-wide structured supplementary paired reading programme to support learners with their reading (Fuchs et al., 1997). What remains at the core of implementing PALS in any given location is the co-creation with teachers to ensure PALS fits with that educational context. This paper discusses the involvement of teachers as co-creators in the process of adapting PALS in England, United Arab Emirates (UAE), Taiwan and Iceland. The aim is to demonstrate the importance of careful adaptation when implementing a programme adopted from another country. Each adaption used a different methodological approach to co-creation. For example, in England, field notes, informal conversations and interviews were utilised for co-creation. In Iceland, preschool and elementary teachers were instrumental in translating and adapting the PALS materials to the Icelandic context. From each adaption, the teachers supported the development of a literacy programme that was suitable for classroom use. In England, teachers' involvement resulted in the removal of the motivational point system. For the UAE context, PALS began in English to support second language learning, but the instructional routines were a good ‘fit’ for the school culture and were developed in Arabic. For the Taiwan context, PALS provided an empirical basis for a model of differentiated instruction to enhance the reading literacy of Chinese-speaking elementary students. In Iceland, teachers trained other teachers in PALS as a research-based and efficient approach to meeting diverse learning needs of students, especially those with Icelandic as an additional language. Careful adaptation, piloting and the involvement of key stakeholders is important for the successful implementation of a reading programme.Peer reviewe

    Photothermal responsivity of van der Waals material-based nanomechanical resonators

    Full text link
    Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry-Perot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation. Here, we address the knowledge gap by studying electromotively driven niobium diselenide drumheads fabricated on highly reflective substrates. We use a FP-mediated absorptive heating model to explain the measured variations of the photothermal response. The model predicts a higher magnitude and tuning range of photothermal responses on few-layer and monolayer NbSe2_{2} drumheads, which outperform other clamped vdW drum-type NMRs at a laser wavelength of 532532\,nm. Further analysis of the model shows that both the magnitude and tuning range of NbSe2_{2} drumheads scale with thickness, establishing a displacement-based framework for building bolometers using FP-mediated vdW NMRs.Comment: 7 pages, 4 figure

    Fabry-Perot Interferometric Calibration of 2D Nanomechanical Plate Resonators

    Get PDF
    Displacement calibration of nanomechanical plate resonators presents a challenging task. Large nanomechanical resonator thickness reduces the amplitude of the resonator motion due to its increased spring constant and mass, and its unique reflectance. Here, we show that the plate thickness, resonator gap height, and motional amplitude of circular and elliptical drum resonators, can be determined in-situ by exploiting the fundamental interference phenomenon in Fabry-Perot cavities. The proposed calibration scheme uses optical contrasts to uncover thickness and spacer height profiles, and reuse the results to convert the photodetector signal to the displacement of drumheads that are electromotively driven in their linear regime. Calibrated frequency response and spatial mode maps enable extraction of the modal radius, effective mass, effective driving force, and Young's elastic modulus of the drumhead material. This scheme is applicable to any configuration of Fabry-Perot cavities, including plate and membrane resonators

    Observing off-resonance motion of nanomechanical resonators as modal superposition

    Get PDF
    Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion could be obtained by also looking at modal responses at frequencies in between resonances. A common way to do this is to force a mechanical object into oscillations and study its off-resonance behaviour. In this paper, we present visualisation of the modal response shapes for a mechanical drum driven off resonance. By using the frequency modal analysis, we describe these shapes as a superposition of resonance modes. We find that the spatial distribution of the oscillating component of the driving force affects the modal weight or participation. Moreover, we are able to infer the asymmetry of the drum by studying the dependence of the resonance modes shapes on the frequency of the driving force. Our results highlight that dynamic responses of any mechanical system are mixtures of their resonance modes with various modal weights, further giving credence to the universality of this phenomenon

    Optoelectrical nanomechanical resonators made from multilayered 2D materials

    Get PDF
    Studies involving nanomechanical motion have evolved from its detection and understanding of its fundamental aspects to its promising practical utility as an integral component of hybrid systems. Nanomechanical resonators' indispensable role as transducers between optical and microwave fields in hybrid systems, such as quantum communications interface, have elevated their importance in recent years. It is therefore crucial to determine which among the family of nanomechanical resonators is more suitable for this role. Most of the studies revolve around nanomechanical resonators of ultrathin structures because of their inherently large mechanical amplitude due to their very low mass. Here, we argue that the underutilized nanomechanical resonators made from multilayered two-dimensional (2D) materials are the better fit for this role because of their comparable electrostatic tunability and larger optomechanical responsivity. To show this, we first demonstrate the electrostatic tunability of mechanical modes of a multilayered nanomechanical resonator made from graphite. We also show that the optomechanical responsivity of multilayered devices will always be superior as compared to the few-layer devices. Finally, by using the multilayered model and comparing this device with the reported ones, we find that the electrostatic tunability of devices of intermediate thickness is not significantly lower than that of ultrathin ones. Together with the practicality in terms of fabrication ease and design predictability, we contend that multilayered 2D nanomechanical resonators are the optimal choice for the electromagnetic interface in integrated quantum systems

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis

    No full text
    Intellectual disability (ID) and autism spectrum disorder (ASD) are complex neurodevelopmental disorders with high heritability. To search for the genetic deficits in two siblings affected with ID and ASD in a family, we first performed a genome-wide copy number variation (CNV) analysis using chromosomal microarray analysis (CMA). We found a 3.7 Mb microdeletion at 22q13.3 in the younger sister. This de novo microdeletion resulted in the haploinsufficiency of SHANK3 and several nearby genes involved in neurodevelopment disorders. Hence, she was diagnosed with Phelan–McDermid syndrome (PMS, OMIM#606232). We further performed whole-genome sequencing (WGS) analysis in this family. We did not detect pathogenic mutations with significant impacts on the phenotypes of the elder brother. Instead, we identified several rare, likely pathogenic variants in seven genes implicated in neurodevelopmental disorders: KLHL17, TDO2, TRRAP, EIF3F, ATP10A, DICER1, and CDH15. These variants were transmitted from his unaffected parents, indicating these variants have only moderate clinical effects. We propose that these variants worked together and led to the clinical phenotypes in the elder brother. We also suggest that the combination of multiple genes with moderate effects is part of the genetic mechanism of neurodevelopmental disorders

    Does Deep Squat Quality Affect the Propulsion of Baseball Throwing?

    No full text
    This study investigates the influence of the quality of the “deep squat” movement, adapted from the Functional Movement Screen (FMS) system, on the lower extremity movement pattern during baseball throwing, and its potential impact on throwing performance and propulsion efficiency. Twenty-two baseball players were recruited and categorized into two groups: 13 in the high-score squat group (HSS) and 9 in the low-score squat group (LSS), based on their deep squat screening results. This research explored disparities in ball velocity, propulsion efficiency, propulsion ground reaction force (GRF) characteristics, and throwing kinematics between these two groups. The findings revealed no significant difference in ball velocity between the groups. However, the LSS group demonstrated a lower propulsion GRF efficiency (p p p p p p p p p p p p p p < 0.021, ES = 0.49). In conclusion, this study suggests that squat screening is a valuable tool for assessing propulsion efficiency. Coaches and trainers should be mindful of players with low squat quality but high throwing performance, as they may face increased impact and injury risks in the future
    corecore