132 research outputs found

    Proinflammatory and Th2 Cytokines Regulate the High Affinity IgE Receptor (FcεRI) and IgE-Dependant Activation of Human Airway Smooth Muscle Cells

    Get PDF
    BACKGROUND:The high affinity IgE receptor (FcepsilonRI) is a crucial structure for IgE-mediated allergic reactions. We have previously demonstrated that human airway smooth muscle (ASM) cells express the tetrameric (alphabetagamma2) FcepsilonRI, and its activation leads to marked transient increases in intracellular Ca(2+) concentration, release of Th-2 cytokines and eotaxin-1/CCL11. Therefore, it was of utmost importance to delineate the factors regulating the expression of FcepsilonRI in human (ASM) cells. METHODOLOGY/PRINCIPAL FINDINGS:Incubation of human bronchial and tracheal smooth muscle (B/TSM) cells with TNF-alpha, IL-1beta or IL-4 resulted in a significant increase in FcepsilonRI-alpha chain mRNA expression (p<0.05); and TNF-alpha, IL-4 enhanced the FcepsilonRI-alpha protein expression compared to the unstimulated control at 24, 72 hrs after stimulation. Interestingly, among all other cytokines, only TNF-alpha upregulated the FcepsilonRI-gamma mRNA expression. FcepsilonRI-gamma protein expression remained unchanged despite the nature of stimulation. Of note, as a functional consequence of FcepsilonRI upregulation, TNF-alpha pre-sensitization of B/TSM potentially augmented the CC (eotaxin-1/CCL11 and RANTES/CCL5, but not TARC/CCL17) and CXC (IL-8/CXCL8, IP-10/CXCL10) chemokines release following IgE stimulation (p<0.05, n = 3). Furthermore, IgE sensitization of B/TSM cells significantly enhanced the transcription of selective CC and CXC chemokines at promoter level compared to control, which was abolished by Lentivirus-mediated silencing of Syk expression. CONCLUSIONS/SIGNIFICANCE:Our data depict a critical role of B/TSM in allergic airway inflammation via potentially novel mechanisms involving proinflammatory, Th2 cytokines and IgE/FcepsilonRI complex

    Optimization and Functional Effects of Stable Short Hairpin RNA Expression in Primary Human Lymphocytes via Lentiviral Vectors

    Get PDF
    Specific, potent, and sustained short hairpin RNA (shRNA)-mediated gene silencing is crucial for the successful application of RNA interference technology to therapeutic interventions. We examined the effects of shRNA expression in primary human lymphocytes (PBLs) using lentiviral vectors bearing different RNA polymerase III promoters. We found that the U6 promoter is more efficient than the H1 promoter for shRNA expression and for reducing expression of CCR5 in PBLs. However, shRNA expression from the U6 promoter resulted in a gradual decline of the transduced cell populations. With one CCR5 shRNA this decline could be attributed to elevated apoptosis but another CCR5 shRNA that caused cytotoxicity did not show evidence of apoptosis, suggesting sequence-specific mechanisms for cytotoxicity. In contrast to the U6 promoter, PBLs transduced by vectors expressing shRNAs from the H1 promoter could be maintained without major cytotoxic effects. Since a lower level of shRNA expression appears to be advantageous to maintaining the shRNA-transduced population, lentiviral vectors bearing the H1 promoter are more suitable for stable transduction and expression of shRNA in primary human T lymphocytes. Our results suggest that functional shRNA screens should include tests for both potency and adverse metabolic effects upon primary cells

    Enterovirus 71 Outbreak, Brunei

    Get PDF
    Enterovirus 71 (EV71) outbreaks occur periodically in the Asia-Pacific region. In 2006, Brunei reported its first major outbreak of EV71 infections, associated with fatalities from neurologic complications. Isolated EV71 strains formed a distinct lineage with low diversity within subgenogroup B5, suggesting recent introduction and rapid spread within Brunei

    Synchrotron Signatures of Cosmic Ray Transport Physics in Galaxies

    Full text link
    Cosmic rays (CRs) may drive outflows and alter the phase structure of the circumgalactic medium, with potentially important implications on galaxy formation. However, these effects ultimately depend on the dominant mode of transport of CRs within and around galaxies, which remains highly uncertain. To explore potential observable constraints on CR transport, we investigate a set of cosmological FIRE-2 CR-MHD simulations of L_{\ast} galaxies which evolve CRs with transport models motivated by self-confinement (SC) and extrinsic turbulence (ET) paradigms. To first order, the synchrotron properties diverge between SC and ET models due to a CR physics driven hysteresis. SC models show a higher tendency to undergo `ejective' feedback events due to a runaway buildup of CR pressure in dense gas due to the behavior of SC transport scalings at extremal CR energy densities. The corresponding CR wind-driven hysteresis results in brighter, smoother, and more extended synchrotron emission in SC runs relative to ET and constant diffusion runs. The differences in synchrotron arise from different morphology, ISM gas and \textbf{B} properties, potentially ruling out SC as the dominant mode of CR transport in typical star-forming L_{\ast} galaxies, and indicating the potential for non-thermal radio continuum observations to constrain CR transport physics.Comment: 5 pages, 3 figures. Accepted versio

    Synchrotron Emission on FIRE: Equipartition Estimators of Magnetic Fields in Simulated Galaxies with Spectrally-Resolved Cosmic Rays

    Full text link
    Synchrotron emission is one of few observable tracers of galactic magnetic fields (\textbf{B}) and cosmic rays (CRs). Much of our understanding of \textbf{B} in galaxies comes from utilizing synchrotron observations in conjunction with several simplifying assumptions of equipartition models, however it remains unclear how well these assumptions hold, and what \textbf{B} these estimates physically represent. Using FIRE simulations which self consistently evolve CR proton, electron, and positron spectra from MeV to TeV energies, we present the first synthetic synchrotron emission predictions from simulated L_{*} galaxies with "live" spectrally-resolved CR-MHD. We find that synchrotron emission can be dominated by relatively cool and dense gas, resulting in equipartition estimates of \textbf{B} with fiducial assumptions underestimating the "true" \textbf{B} in the gas that contributes the most emission by factors of 2-3 due to small volume filling factors. Motivated by our results, we present an analytic framework that expands upon equipartition models for estimating \textbf{B} in a multi-phase medium. Comparing our spectrally-resolved synchrotron predictions to simpler spectral assumptions used in galaxy simulations with CRs, we find that spectral evolution can be crucial for accurate synchrotron calculations towards galactic centers, where loss terms are large.Comment: 10 pages, 5 figures (with 3 additional figures in the Appendix). Submitted to MNRAS - comments welcome
    corecore