1,917 research outputs found
Survival of Hendra Virus in the Environment: Modelling the Effect of Temperature
Hendra virus (HeV), a highly pathogenic zoonotic paramyxovirus recently emerged from bats, is a major concern to the horse industry in Australia. Previous research has shown that higher temperatures led to lower virus survival rates in the laboratory. We develop a model of survival of HeV in the environment as influenced by temperature. We used 20 years of daily temperature at six locations spanning the geographic range of reported HeV incidents to simulate the temporal and spatial impacts of temperature on HeV survival. At any location, simulated virus survival was greater in winter than in summer, and in any month of the year, survival was higher in higher latitudes. At any location, year-to-year variation in virus survival 24 h post-excretion was substantial and was as large as the difference between locations. Survival was higher in microhabitats with lower than ambient temperature, and when environmental exposure was shorter. The within-year pattern of virus survival mirrored the cumulative within-year occurrence of reported HeV cases, although there were no overall differences in survival in HeV case years and non-case years. The model examines the effect of temperature in isolation; actual virus survivability will reflect the effect of additional environmental factor
Survival of Hendra Virus in the Environment: Modelling the Effect of Temperature
Hendra virus (HeV), a highly pathogenic zoonotic paramyxovirus recently emerged from bats, is a major concern to the horse industry in Australia. Previous research has shown that higher temperatures led to lower virus survival rates in the laboratory. We develop a model of survival of HeV in the environment as influenced by temperature. We used 20 years of daily temperature at six locations spanning the geographic range of reported HeV incidents to simulate the temporal and spatial impacts of temperature on HeV survival. At any location, simulated virus survival was greater in winter than in summer, and in any month of the year, survival was higher in higher latitudes. At any location, year-to-year variation in virus survival 24 h post-excretion was substantial and was as large as the difference between locations. Survival was higher in microhabitats with lower than ambient temperature, and when environmental exposure was shorter. The within-year pattern of virus survival mirrored the cumulative within-year occurrence of reported HeV cases, although there were no overall differences in survival in HeV case years and non-case years. The model examines the effect of temperature in isolation; actual virus survivability will reflect the effect of additional environmental factor
Probing the inter-layer exciton physics in a MoS/MoSe/MoS van der Waals heterostructure
Stacking atomic monolayers of semiconducting transition metal dichalcogenides
(TMDs) has emerged as an effective way to engineer their properties. In
principle, the staggered band alignment of TMD heterostructures should result
in the formation of inter-layer excitons with long lifetimes and robust valley
polarization. However, these features have been observed simultaneously only in
MoSe/WSe heterostructures. Here we report on the observation of long
lived inter-layer exciton emission in a MoS/MoSe/MoS trilayer van
der Waals heterostructure. The inter-layer nature of the observed transition is
confirmed by photoluminescence spectroscopy, as well as by analyzing the
temporal, excitation power and temperature dependence of the inter-layer
emission peak. The observed complex photoluminescence dynamics suggests the
presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We
show that circularly polarized optical pumping results in long lived valley
polarization of inter-layer exciton. Intriguingly, the inter-layer exciton
photoluminescence has helicity opposite to the excitation. Our results show
that through a careful choice of the TMDs forming the van der Waals
heterostructure it is possible to control the circular polarization of the
inter-layer exciton emission.Comment: 19 pages, 3 figures. Just accepted for publication in Nano Letters
(http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03184
Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor
Systematic ac susceptibility measurements have been performed on a MgB
bulk sample. We demonstrate that the flux creep activation energy is a
nonlinear function of the current density , indicating a
nonlogarithmic relaxation of the current density in this material. The
dependence of the activation energy on the magnetic field is determined to be a
power law , showing a steep decline in the activation
energy with the magnetic field, which accounts for the steep drop in the
critical current density with magnetic field that is observed in MgB. The
irreversibility field is also found to be rather low, therefore, the pinning
properties of this new material will need to be enhanced for practical
applications.Comment: 11 pages, 6 figures, Revtex forma
Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli
λ-Red system-based recombinogenic engineering is a powerful new method to engineer DNA without the need for restriction enzymes or ligases. Here, we report the use of a single selectable marker to enhance the usefulness of this approach. The strategy is to utilize the thymidylate synthase A (thyA) gene, which encodes an enzyme involved in the synthesis of thymidine 5′-triphosphate, for both positive and negative selection. With this approach, we successfully created point mutations in plasmid and bacterial artificial chromosome (BAC) DNA containing the mouse Col10a1 gene. The results showed that the thyA selection system is highly efficient and accurate, giving an average of >90% selection efficiency. This selection system produces DNA that is free from permanent integration of unwanted sequences, thus allowing unlimited rounds of modifications if required
Site-selective nuclear magnetic relaxation time in a superconducting vortex state
The temperature and field dependences of the site-selective nuclear spin
relaxation time T_1 around vortices are studied comparatively both for s-wave
and d-wave superconductors, based on the microscopic Bogoliubov-de Gennes
theory. Reflecting low energy electronic excitations associated with the vortex
core, the site selective temperature dependences deviate from those of the
zero-field case, and T_1 becomes faster with approaching the vortex core. In
the core region, T_1^{-1} has a new peak below the superconducting transition
temperature T_c. The field dependence of the overall T_1(T) behaviors for
s-wave and d-wave superconductors is investigated and analyzed in terms of the
local density of states. The NMR study by the resonance field dependence may be
a new method to probe the spatial resolved vortex core structure in various
conventional and unconventional superconductors.Comment: 14Pages, 26 figures, revte
Bone mineral density enhances use of clinical risk factors in predicting ten-year risk of osteoporotic fractures in Chinese men: the Hong Kong Osteoporosis Study
This prospective study aimed to determine the risk factors and the 10-year probability of osteoporotic fracture in Southern Chinese men. The findings show substantial population differences in fracture incidence and risk prediction compared to the FRAX TM model, and the addition of BMD information to clinical risk factor assessment improved fracture risk prediction in Chinese men. Introduction: Clinical risk factors with or without bone mineral density (BMD) measurements are increasingly recognized as reliable predictors of fracture risk. Prospective data on fracture incidence in Asian men remain sparse. This prospective study aimed to determine the risk factors and the 10-year absolute fracture risk in Southern Chinese men. Methods: This is a part of the Hong Kong Osteoporosis Study. One thousand eight hundred ten (1,810) community-dwelling, treatment-naive men aged 50 years or above were evaluated. Baseline demographic characteristics, clinical risk factors and BMD were recorded. Ten-year risk of osteoporotic fracture was calculated using Cox proportional hazards models. Results: The mean age of subjects was 68.0 ± 10.3 years. After a mean follow-up period of 3.5±2.9 years (range 1 to 14 years), 37 incident low-trauma fractures were recorded. The incidence for all osteoporotic fractures and hip fractures was 635/100,000 and 123/100,000 person-years, respectively. The most significant predictors of osteoporotic fracture were history of fall (RR 14.5), femoral neck BMD T-score < -2.5 (RR 13.8) and history of fracture (RR 4.4). Each SD reduction in BMD was associated with a 1.8 to 2.6-fold increase in fracture risk. Subjects with seven clinical risk factors and BMD T-score of -1 had an absolute 10-year risk of osteoporotic fracture of 8.9%, but this increased to 22.7% if they also had a femoral neck BMD T-score of -2.5. Conclusions: These findings show substantial population differences in fracture incidence and risk prediction. The addition of BMD information to clinical risk factor assessment improved fracture risk prediction in Chinese men. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Recommended from our members
A study into the behaviour of the formation level of an excavation under different unloading patterns in soft deposits
The construction of basements in urban areas is often associated with the possible damage to existing structures and services. The varying construction processes inevitably lead to different stress unloading patterns and therefore the dissipation of these excess pore-water pressures may lead to non-standard deformation profiles. The three main types of basement construction processes are layered excavation (LE), basin excavation (BE) and island excavation (IE). The effect of the various unloading patterns has been investigated by a three dimensional (3D) effective stress analysis method using the developed computer program 3DBCPE4.0. An excavation of length 50 m, width 50 m and depth 9 m in a certain homogenous and isotropic saturated soft soil was modelled. This included a diaphragm wall of 800-mm thickness embedded 18 m deep into the soft soil. The different excavation deformation profiles under different excavation patterns were related to the different unloading process, the exposure time of excavation face and the dissipation of negative excess pore-water pressures. The most favourable process for controlling the horizontal deformation of a retaining wall or the heave deformation of the formation level is suggested. The ground water potentials within the formation level are also presented
Networking - A Statistical Physics Perspective
Efficient networking has a substantial economic and societal impact in a
broad range of areas including transportation systems, wired and wireless
communications and a range of Internet applications. As transportation and
communication networks become increasingly more complex, the ever increasing
demand for congestion control, higher traffic capacity, quality of service,
robustness and reduced energy consumption require new tools and methods to meet
these conflicting requirements. The new methodology should serve for gaining
better understanding of the properties of networking systems at the macroscopic
level, as well as for the development of new principled optimization and
management algorithms at the microscopic level. Methods of statistical physics
seem best placed to provide new approaches as they have been developed
specifically to deal with non-linear large scale systems. This paper aims at
presenting an overview of tools and methods that have been developed within the
statistical physics community and that can be readily applied to address the
emerging problems in networking. These include diffusion processes, methods
from disordered systems and polymer physics, probabilistic inference, which
have direct relevance to network routing, file and frequency distribution, the
exploration of network structures and vulnerability, and various other
practical networking applications.Comment: (Review article) 71 pages, 14 figure
- …