64 research outputs found

    Innate Immune Recognition of mtDNA—An Undercover Signal?

    Get PDF
    In addition to their roles in cellular metabolism and apoptosis, mitochondria function as signaling platforms in the innate immune response. In Nature, West et al. (2015) demonstrate that mitochondrial stress triggers a type I interferon response and confers viral resistance via release of mtDNA and activation of the cGAS–STING pathway

    The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs

    Get PDF
    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing enzyme responsible for maintaining cellular energy homeostasis. Activation of AMPK by salicylate and the thienopyridone A-769662 is critically dependent on phosphorylation of Ser108 in the β1 regulatory subunit. Here, we show a possible role for Ser108 phosphorylation in cell cycle regulation and promotion of pro-survival pathways in response to energy stress. We identify the autophagy initiator Unc-51-like kinase 1 (ULK1) as a β1-Ser108 kinase in cells. Cellular β1-Ser108 phosphorylation by ULK1 was dependent on AMPK β-subunit myristoylation, metabolic stress associated with elevated AMP/ATP ratio, and the intrinsic energy sensing capacity of AMPK; features consistent with an AMP-induced myristoyl switch mechanism. We further demonstrate cellular AMPK signaling independent of activation loop Thr172 phosphorylation, providing potential insight into physiological roles for Ser108 phosphorylation. These findings uncover new mechanisms by which AMPK could potentially maintain cellular energy homeostasis independently of Thr172 phosphorylation

    Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress

    Get PDF
    Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress

    An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia

    Get PDF
    Energy stress, such as ischemia, induces mitochondrial damage and death in the heart. Degradation of damaged mitochondria by mitophagy is essential for the maintenance of healthy mitochondria and survival. Here, we show that mitophagy during myocardial ischemia was mediated predominantly through autophagy characterized by Rab9-associated autophagosomes, rather than the well-characterized form of autophagy that is dependent on the autophagy-related 7 (Atg) conjugation system and LC3. This form of mitophagy played an essential role in protecting the heart against ischemia and was mediated by a protein complex consisting of unc-51 like kinase 1 (Ulk1), Rab9, receptor-interacting serine/ thronine protein kinase 1 (Rip1), and dynamin-related protein 1 (Drp1). This complex allowed the recruitment of transGolgi membranes associated with Rab9 to damaged mitochondria through S179 phosphorylation of Rab9 by Ulk1 and S616 phosphorylation of Drp1 by Rip1. Knockin of Rab9 (S179A) abolished mitophagy and exacerbated the injury in response to myocardial ischemia, without affecting conventional autophagy. Mitophagy mediated through the Ulk1/Rab9/Rip1/Drp1 pathway protected the heart against ischemia by maintaining healthy mitochondria

    Mutual interactions between HIV-1 and the host cell cycle: implications for the neuropathogenesis of ADC

    No full text
    Progression of host cells through the mitotic division cycle provides a changing environment that can influence replication of the human immunodeficiency virus type-1 (HIV-1). There is increasing evidence that the position of the cell in the cell cycle regulates several steps in the viral life cycle, including reverse transcription of HIV-1 RNA and nuclear translocation of the viral pre-integration complex. In the following manuscripts, we provide evidence that HIV-1 transcription is also linked to the host cell cycle. E2F-1 is a transcriptional activator that is involved in promoting entry of cells into the S-phase. Our studies demonstrate that this protein represses HIV-1 transcription by binding to a site within the NF-kB enhancer region of the HIV-1 LTR and interacting with the 50kDa DNA-binding subunit of NF-kB. The retinoblastoma protein is involved in inhibiting cell cycle progression, at least in part through its ability to interact with E2F-1. Rb, in its underphosphorylated form, enhances NF-kB mediated transcription. Since this form of Rb also interacts with E2F-1, it is likely that Rb may function by inhibiting the negative effects of E2F-1 on the HIV-1 promoter. Our data suggests that cells early in the G1 phase contain an array of factors which promote high levels of HIV-1 transcription. In addition to examining the effects of host cell cycle progression of the HIV-1 transcription, we investigated the effect of the HIV-1 Tat protein on cell proliferation. Our studies demonstrate that Tat arrests astrocytic cells in the G1 phase. This arrest is associated with the dysregulated G1 kinase activity and inhibition of Rb phosphorylation. We propose that the mutual interactions between virus and host, with respect to cell proliferation and viral replication, may establish a positive feed-back loop that may contribute to the pathogenesis of AIDS

    ER-to-Golgi Trafficking and Its Implication in Neurological Diseases

    No full text
    Membrane and secretory proteins are essential for almost every aspect of cellular function. These proteins are incorporated into ER-derived carriers and transported to the Golgi before being sorted for delivery to their final destination. Although ER-to-Golgi trafficking is highly conserved among eukaryotes, several layers of complexity have been added to meet the increased demands of complex cell types in metazoans. The specialized morphology of neurons and the necessity for precise spatiotemporal control over membrane and secretory protein localization and function make them particularly vulnerable to defects in trafficking. This review summarizes the general mechanisms involved in ER-to-Golgi trafficking and highlights mutations in genes affecting this process, which are associated with neurological diseases in humans

    The link between autophagy and secretion: A story of multitasking proteins

    Get PDF
    The secretory and autophagy pathways can be thought of as the biosynthetic (i.e., anabolic) and degradative (i.e., catabolic) branches of the endomembrane system. In analogy to anabolic and catabolic pathways in metabolism, there is mounting evidence that the secretory and autophagy pathways are intimately linked and that certain regulatory elements are shared between them. Here we highlight the parallels and points of intersection between these two evolutionarily highly conserved and fundamental endomembrane systems. The intersection of these pathways may play an important role in remodeling membranes during cellular stress

    ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy

    No full text
    A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958

    Mitophagy in hematopoietic stem cells

    No full text
    • …
    corecore