267 research outputs found

    General approach to the study of vacuum space-times with an isometry

    Get PDF
    In vacuum space-times the exterior derivative of a Killing vector field is a 2-form (named here as the Papapetrou field) that satisfies Maxwell's equations without electromagnetic sources. In this paper, using the algebraic structure of the Papapetrou field, we will set up a new formalism for the study of vacuum space-times with an isometry, which is suitable to investigate the connections between the isometry and the Petrov type of the space-time. This approach has some advantages, among them, it leads to a new classification of these space-times and the integrability conditions provide expressions that determine completely the Weyl curvature. These facts make the formalism useful for application to any problem or situation with an isometry and requiring the knowledge of the curvature.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum Gravit

    A Model for the Moving `Wisps' in the Crab Nebula

    Get PDF
    I propose that the moving `wisps' near the center of the Crab Nebula result from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the shocked pulsar wind. Recent observations suggest that the wisps trace out circular wavefronts in this plane, expanding radially at speeds approximately less than c/3. Instabilities could develop if there is sufficient velocity shear between a faster-moving equatorial zone and a slower moving shocked pulsar wind at higher latitudes. The development of shear could be related to the existence of a neutral sheet -- with weak magnetic field -- in the equatorial zone, and could also be related to a recent suggestion by Begelman that the magnetic field in the Crab pulsar wind is much stronger than had been thought. I show that plausible conditions could lead to the growth of instabilities at the radii and speeds observed, and that their nonlinear development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear in the Astrophysical Journal, Feb. 20, 1999, Vol. 51

    All conformally flat pure radiation metrics

    Get PDF
    The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.Comment: 7 pages, plain Te

    Evidence for Heating of Neutron Stars by Magnetic Field Decay

    Get PDF
    We show the existence of a strong trend between neutron star surface temperature and the dipolar component of the magnetic field extending through three orders of field magnitude, a range that includes magnetars, radio-quiet isolated neutron stars, and many ordinary radio pulsars. We suggest that this trend can be explained by the decay of currents in the crust over a time scale of few Myr. We estimate the minimum temperature that a NS with a given magnetic field can reach in this interpretation.Comment: 4 pages, 1 figures, version accepted for publication in Phys. Rev. Let

    Consequences of a Killing symmetry in spacetime's local structure

    Full text link
    In this paper we discuss the consequences of a Killing symmetry on the local geometrical structure of four-dimensional spacetimes. We have adopted the point of view introduced in recent works where the exterior derivative of the Killing plays a fundamental role. Then, we study some issues related with this approach and clarify why in many circumstances its use has advantages with respect to other approaches. We also extend the formalism developed in the case of vacuum spacetimes to the general case of an arbitrary energy-momentum content. Finally, we illustrate our framework with the case of spacetimes with a gravitating electromagnetic field.Comment: 20 pages, LaTeX2e, IOP style. Revised version accepted for publication in Classical and Quantum Gravit

    Generalised Kundt waves and their physical interpretation

    Full text link
    We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant (Λc\Lambda_c) is non-zero. The possible presence of an aligned pure radiation field is also assumed. These space-times generalise the known vacuum solutions of type N with arbitrary Λc\Lambda_c and type III with Λc=0\Lambda_c=0. It is shown that there are two, one and three distinct classes of solutions when Λc\Lambda_c is respectively zero, positive and negative. The wave surfaces are plane, spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter backgrounds respectively, and the structure of the family of wave surfaces in the background space-time is described. The weak singularities which occur in these space-times are interpreted in terms of envelopes of the wave surfaces.Comment: 16 pages including 2 figures. To appear in Classical and Quantum Gra

    On the Significance of the Weyl Curvature in a Relativistic Cosmological Model

    Full text link
    The Weyl curvature includes the Newtonian field and an additional field, the so-called anti-Newtonian. In this paper, we use the Bianchi and Ricci identities to provide a set of constraints and propagations for the Weyl fields. The temporal evolutions of propagations manifest explicit solutions of gravitational waves. We see that models with purely Newtonian field are inconsistent with relativistic models and obstruct sounding solutions. Therefore, both fields are necessary for the nonlocal nature and radiative solutions of gravitation.Comment: 15 pages, incorporating proof correction

    High Energy Gamma--Radiation from the Galactic Center due to Neutralino Annihilation

    Full text link
    We study the NGS (Non--dissipative Gravitational Singularity) model, which successfully describes the non--linear stage of evolution of perturbations (see [1], [2] and references therein). This model predicts DM density distribution ρ(r)rα\rho(r) \sim r^{-\alpha} with α1.8\alpha \simeq 1.8 which holds from very small distances rmin0.01 pcr_{\rm min} \simeq 0.01~{\rm pc} up to very large distances rmax5 Mpcr_{\rm max} \simeq 5~{\rm Mpc}. Assuming the neutralino to be a CDM particle, we calculate the annihilation of neutralinos in the vicinity of the singularity (Galactic Center). If neutralinos are the dominant component of DM in our Galaxy, the produced energy is enough to provide the whole observed activity of the GC. Neutralinos of the most general composition and of mass in the range 20~{\rm GeV} \leq m_\c \leq 1~{\rm TeV} are considered. We find the neutralino compositions which give the relic density needed for the Mixed Dark Matter (MDM) model and we evaluate for these compositions the high--energy (Eγ>100 MeVE_{\gamma} > 100 ~{\rm MeV}) gamma--ray flux under the constraint that the radio flux is lower than the observational limit. The compositions with the detectable gamma--ray flux which we found are provided by a set of almost pure gaugino states with the neutralino mass between 100100 and 500500 GeV. We demonstrate that a detectable high--energy gamma--ray flux is produced by the neutralino annihilation also in the case when neutralinos provide a small fraction (down to 0.1%0.1 \%) of the DM in our Galaxy. The predicted flux is Fγ107108 cm2 s1F_\gamma \sim 10^{-7}-10^{-8}~{\rm cm}^{-2}~{\rm s}^{-1} for E_\gamma \gsim 300~{\rm MeV}Comment: Plain TeX 11 pages 4 figures available on request. Preprint numbers LNGS 94/90 - DFTT 5/9

    Circulating endothelial cells demonstrate an attenuation of endothelial damage by minimizing the extracorporeal circulation

    Get PDF
    ObjectiveDetachment of endothelial cells may represent serious injury of the endothelium after cardiopulmonary bypass. We investigated whether the extent of endothelial injury is related to the type of cardiopulmonary bypass system used (conventional or minimized) and determined circulating endothelial cells as well as von Willebrand factor and soluble thrombomodulin.MethodsTwenty patients scheduled for elective coronary bypass grafting were randomly assigned to either the minimal extracorporeal circulation system or the standard cardiopulmonary bypass. Ten healthy volunteers served as controls. Circulating endothelial cells per milliliter of full blood were perioperatively determined by immunomagnetic cell separation technique. Endothelial plasma markers were measured by enzyme-linked immunosorbent assay.ResultsPreoperative circulating endothelial cell numbers did not differ between the experimental groups, but were significantly higher than in the healthy controls (18.6 ± 5.6 vs 7.2 ± 3.8, P < .001). At 6 hours, circulating endothelial cell numbers increased significantly compared with baseline in both experimental groups and peaked at 12 hours after cardiopulmonary bypass initiation, each time with significantly lower values in the minimal extracorporeal circulation group (6 hours: 44.0 ± 9.9 vs 29.6 ± 9.8, P = .007; 12 hours: 48.1 ± 6.8 vs 31.8 ± 7.1, P < .001). Likewise, von Willebrand factor and soluble thrombomodulin postoperatively increased in both groups with a tendency toward lower levels in the minimal extracorporeal circulation group. Although circulating endothelial cells gradually declined, continually with lower numbers in the minimal extracorporeal circulation group, the endothelial plasma markers remained elevated during observation time.ConclusionsCirculating endothelial cells represent a novel marker of the intrinsic endothelial damage caused by cardiopulmonary bypass. Its analysis facilitates the evaluation of cardiopulmonary bypass modifications as the minimal extracorporeal circulation system could be proven to be less injurious to endothelium and myocardium

    Invariant classification and the generalised invariant formalism: conformally flat pure radiation metrics, with zero cosmological constant

    Full text link
    Metrics obtained by integrating within the generalised invariant formalism are structured around their intrinsic coordinates, and this considerably simplifies their invariant classification and symmetry analysis. We illustrate this by presenting a simple and transparent complete invariant classification of the conformally flat pure radiation metrics (except plane waves) in such intrinsic coordinates; in particular we confirm that the three apparently non-redundant functions of one variable are genuinely non-redundant, and easily identify the subclasses which admit a Killing and/or a homothetic Killing vector. Most of our results agree with the earlier classification carried out by Skea in the different Koutras-McIntosh coordinates, which required much more involved calculations; but there are some subtle differences. Therefore, we also rework the classification in the Koutras-McIntosh coordinates, and by paying attention to some of the subtleties involving arbitrary functions, we are able to obtain complete agreement with the results obtained in intrinsic coordinates. In particular, we have corrected and completed statements and results by Edgar and Vickers, and by Skea, about the orders of Cartan invariants at which particular information becomes available.Comment: Extended version of GRG publication, with some typos etc correcte
    corecore