Metrics obtained by integrating within the generalised invariant formalism
are structured around their intrinsic coordinates, and this considerably
simplifies their invariant classification and symmetry analysis. We illustrate
this by presenting a simple and transparent complete invariant classification
of the conformally flat pure radiation metrics (except plane waves) in such
intrinsic coordinates; in particular we confirm that the three apparently
non-redundant functions of one variable are genuinely non-redundant, and easily
identify the subclasses which admit a Killing and/or a homothetic Killing
vector. Most of our results agree with the earlier classification carried out
by Skea in the different Koutras-McIntosh coordinates, which required much more
involved calculations; but there are some subtle differences. Therefore, we
also rework the classification in the Koutras-McIntosh coordinates, and by
paying attention to some of the subtleties involving arbitrary functions, we
are able to obtain complete agreement with the results obtained in intrinsic
coordinates. In particular, we have corrected and completed statements and
results by Edgar and Vickers, and by Skea, about the orders of Cartan
invariants at which particular information becomes available.Comment: Extended version of GRG publication, with some typos etc correcte