267 research outputs found
General approach to the study of vacuum space-times with an isometry
In vacuum space-times the exterior derivative of a Killing vector field is a
2-form (named here as the Papapetrou field) that satisfies Maxwell's equations
without electromagnetic sources. In this paper, using the algebraic structure
of the Papapetrou field, we will set up a new formalism for the study of vacuum
space-times with an isometry, which is suitable to investigate the connections
between the isometry and the Petrov type of the space-time. This approach has
some advantages, among them, it leads to a new classification of these
space-times and the integrability conditions provide expressions that determine
completely the Weyl curvature. These facts make the formalism useful for
application to any problem or situation with an isometry and requiring the
knowledge of the curvature.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum
Gravit
A Model for the Moving `Wisps' in the Crab Nebula
I propose that the moving `wisps' near the center of the Crab Nebula result
from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the
shocked pulsar wind. Recent observations suggest that the wisps trace out
circular wavefronts in this plane, expanding radially at speeds approximately
less than c/3. Instabilities could develop if there is sufficient velocity
shear between a faster-moving equatorial zone and a slower moving shocked
pulsar wind at higher latitudes. The development of shear could be related to
the existence of a neutral sheet -- with weak magnetic field -- in the
equatorial zone, and could also be related to a recent suggestion by Begelman
that the magnetic field in the Crab pulsar wind is much stronger than had been
thought. I show that plausible conditions could lead to the growth of
instabilities at the radii and speeds observed, and that their nonlinear
development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear
in the Astrophysical Journal, Feb. 20, 1999, Vol. 51
All conformally flat pure radiation metrics
The complete class of conformally flat, pure radiation metrics is given,
generalising the metric recently given by Wils.Comment: 7 pages, plain Te
Evidence for Heating of Neutron Stars by Magnetic Field Decay
We show the existence of a strong trend between neutron star surface
temperature and the dipolar component of the magnetic field extending through
three orders of field magnitude, a range that includes magnetars, radio-quiet
isolated neutron stars, and many ordinary radio pulsars. We suggest that this
trend can be explained by the decay of currents in the crust over a time scale
of few Myr. We estimate the minimum temperature that a NS with a given magnetic
field can reach in this interpretation.Comment: 4 pages, 1 figures, version accepted for publication in Phys. Rev.
Let
Consequences of a Killing symmetry in spacetime's local structure
In this paper we discuss the consequences of a Killing symmetry on the local
geometrical structure of four-dimensional spacetimes. We have adopted the point
of view introduced in recent works where the exterior derivative of the Killing
plays a fundamental role. Then, we study some issues related with this approach
and clarify why in many circumstances its use has advantages with respect to
other approaches. We also extend the formalism developed in the case of vacuum
spacetimes to the general case of an arbitrary energy-momentum content.
Finally, we illustrate our framework with the case of spacetimes with a
gravitating electromagnetic field.Comment: 20 pages, LaTeX2e, IOP style. Revised version accepted for
publication in Classical and Quantum Gravit
On the Significance of the Weyl Curvature in a Relativistic Cosmological Model
The Weyl curvature includes the Newtonian field and an additional field, the
so-called anti-Newtonian. In this paper, we use the Bianchi and Ricci
identities to provide a set of constraints and propagations for the Weyl
fields. The temporal evolutions of propagations manifest explicit solutions of
gravitational waves. We see that models with purely Newtonian field are
inconsistent with relativistic models and obstruct sounding solutions.
Therefore, both fields are necessary for the nonlocal nature and radiative
solutions of gravitation.Comment: 15 pages, incorporating proof correction
Generalised Kundt waves and their physical interpretation
We present the complete family of space-times with a non-expanding,
shear-free, twist-free, geodesic principal null congruence (Kundt waves) that
are of algebraic type III and for which the cosmological constant ()
is non-zero. The possible presence of an aligned pure radiation field is also
assumed. These space-times generalise the known vacuum solutions of type N with
arbitrary and type III with . It is shown that there
are two, one and three distinct classes of solutions when is
respectively zero, positive and negative. The wave surfaces are plane,
spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter
backgrounds respectively, and the structure of the family of wave surfaces in
the background space-time is described. The weak singularities which occur in
these space-times are interpreted in terms of envelopes of the wave surfaces.Comment: 16 pages including 2 figures. To appear in Classical and Quantum Gra
High Energy Gamma--Radiation from the Galactic Center due to Neutralino Annihilation
We study the NGS (Non--dissipative Gravitational Singularity) model, which
successfully describes the non--linear stage of evolution of perturbations (see
[1], [2] and references therein). This model predicts DM density distribution
with which holds from very small
distances up to very large distances . Assuming the neutralino to be a CDM particle, we
calculate the annihilation of neutralinos in the vicinity of the singularity
(Galactic Center). If neutralinos are the dominant component of DM in our
Galaxy, the produced energy is enough to provide the whole observed activity of
the GC. Neutralinos of the most general composition and of mass in the range
20~{\rm GeV} \leq m_\c \leq 1~{\rm TeV} are considered. We find the
neutralino compositions which give the relic density needed for the Mixed Dark
Matter (MDM) model and we evaluate for these compositions the high--energy
() gamma--ray flux under the constraint that the
radio flux is lower than the observational limit. The compositions with the
detectable gamma--ray flux which we found are provided by a set of almost pure
gaugino states with the neutralino mass between and GeV. We
demonstrate that a detectable high--energy gamma--ray flux is produced by the
neutralino annihilation also in the case when neutralinos provide a small
fraction (down to ) of the DM in our Galaxy. The predicted flux is
for E_\gamma \gsim
300~{\rm MeV}Comment: Plain TeX 11 pages 4 figures available on request. Preprint numbers
LNGS 94/90 - DFTT 5/9
Circulating endothelial cells demonstrate an attenuation of endothelial damage by minimizing the extracorporeal circulation
ObjectiveDetachment of endothelial cells may represent serious injury of the endothelium after cardiopulmonary bypass. We investigated whether the extent of endothelial injury is related to the type of cardiopulmonary bypass system used (conventional or minimized) and determined circulating endothelial cells as well as von Willebrand factor and soluble thrombomodulin.MethodsTwenty patients scheduled for elective coronary bypass grafting were randomly assigned to either the minimal extracorporeal circulation system or the standard cardiopulmonary bypass. Ten healthy volunteers served as controls. Circulating endothelial cells per milliliter of full blood were perioperatively determined by immunomagnetic cell separation technique. Endothelial plasma markers were measured by enzyme-linked immunosorbent assay.ResultsPreoperative circulating endothelial cell numbers did not differ between the experimental groups, but were significantly higher than in the healthy controls (18.6 ± 5.6 vs 7.2 ± 3.8, P < .001). At 6 hours, circulating endothelial cell numbers increased significantly compared with baseline in both experimental groups and peaked at 12 hours after cardiopulmonary bypass initiation, each time with significantly lower values in the minimal extracorporeal circulation group (6 hours: 44.0 ± 9.9 vs 29.6 ± 9.8, P = .007; 12 hours: 48.1 ± 6.8 vs 31.8 ± 7.1, P < .001). Likewise, von Willebrand factor and soluble thrombomodulin postoperatively increased in both groups with a tendency toward lower levels in the minimal extracorporeal circulation group. Although circulating endothelial cells gradually declined, continually with lower numbers in the minimal extracorporeal circulation group, the endothelial plasma markers remained elevated during observation time.ConclusionsCirculating endothelial cells represent a novel marker of the intrinsic endothelial damage caused by cardiopulmonary bypass. Its analysis facilitates the evaluation of cardiopulmonary bypass modifications as the minimal extracorporeal circulation system could be proven to be less injurious to endothelium and myocardium
Invariant classification and the generalised invariant formalism: conformally flat pure radiation metrics, with zero cosmological constant
Metrics obtained by integrating within the generalised invariant formalism
are structured around their intrinsic coordinates, and this considerably
simplifies their invariant classification and symmetry analysis. We illustrate
this by presenting a simple and transparent complete invariant classification
of the conformally flat pure radiation metrics (except plane waves) in such
intrinsic coordinates; in particular we confirm that the three apparently
non-redundant functions of one variable are genuinely non-redundant, and easily
identify the subclasses which admit a Killing and/or a homothetic Killing
vector. Most of our results agree with the earlier classification carried out
by Skea in the different Koutras-McIntosh coordinates, which required much more
involved calculations; but there are some subtle differences. Therefore, we
also rework the classification in the Koutras-McIntosh coordinates, and by
paying attention to some of the subtleties involving arbitrary functions, we
are able to obtain complete agreement with the results obtained in intrinsic
coordinates. In particular, we have corrected and completed statements and
results by Edgar and Vickers, and by Skea, about the orders of Cartan
invariants at which particular information becomes available.Comment: Extended version of GRG publication, with some typos etc correcte
- …