92 research outputs found

    Whole-body MRI in pediatric patients with cancer

    Get PDF
    Cancer is the leading cause of natural death in the pediatric populations of developed countries, yet cure rates are greater than 70% when a cancer is diagnosed in its early stages. Recent advances in magnetic resonance imaging methods have markedly improved diagnostic and therapeutic approaches, while avoiding the risks of ionizing radiation that are associated with most conventional radiological methods, such as computed tomography and positron emission tomography/computed tomography. The advent of whole-body magnetic resonance imaging in association with the development of metabolic- and function-based techniques has led to the use of whole-body magnetic resonance imaging for the screening, diagnosis, staging, response assessment, and post-therapeutic follow-up of children with solid sporadic tumours or those with related genetic syndromes. Here, the advantages, techniques, indications, and limitations of whole-body magnetic resonance imaging in the management of pediatric oncology patients are presented.AC Camargo Canc Ctr, Dept Imaging, Rua Prof Antonio Prudente 211, BR-01509010 Sao Paulo, SP, BrazilUniv Fed Vale Sao Francisco UNIVASF, Av Jose Sa Manicoba, BR-56304917 Petrolina, PE, BrazilAC Camargo Canc Ctr, Dept Imaging, Rua Prof Antonio Prudente 211, BR-01509010 Sao Paulo, SP, BrazilUniv Sao Paulo, Ribeirao Preto Med Sch, Div Radiol, Dept Internal Med, Av Bandeirantes 3900, BR-14049090 Ribeirao Preto, SP, BrazilUniv Fed Sao Paulo, Dept Diagnost Imagem, Disciplina Diagnost Imagem Pediat, Rua Napoleao de Barros 800, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Ctr Diagnost Imagem, Inst Oncol Pediat & Med Radiol, Inst Oncol Pediat, Rua Napoleao Barros 800, BR-04024002 Sao Paulo, SP, BrazilUniv Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, 1515 Holcombe Blvd, Houston, TX 77030 USAUniv Fed Ciencias Saude Porto Alegre, Dept Radiol, Ctr Hist, Rua Prof Anes Dias 285, BR-90020090 Porto Alegre, RS, BrazilUniv Fed Rio de Janeiro, Dept Radiol, Rua Thomaz Cameron 438, BR-25685129 Petropolis, RJ, BrazilUniv Fed Sao Paulo, Dept Diagnost Imagem, Disciplina Diagnost Imagem Pediat, Rua Napoleao de Barros 800, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Ctr Diagnost Imagem, Inst Oncol Pediat & Med Radiol, Inst Oncol Pediat, Rua Napoleao Barros 800, BR-04024002 Sao Paulo, SP, BrazilWeb of Scienc

    Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer

    Get PDF
    BACKGROUND: No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE: To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS: In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS: FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS: FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY: We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.Fil: Labanca, Estefania. University of Texas; Estados UnidosFil: Yang, Jun. University of Texas; Estados UnidosFil: Shepherd, Peter D. A.. University of Texas; Estados UnidosFil: Wan, Xinhai. University of Texas; Estados UnidosFil: Starbuck, Michael W.. University of Texas; Estados UnidosFil: Guerra, Leah D.. University of Texas; Estados UnidosFil: Anselmino, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Dong, Jiabin. University of Texas; Estados UnidosFil: Chinnaiyan, Arul M.. University Of Michigan Medical School; Estados UnidosFil: Ravoori, Murali K.. University of Texas; Estados UnidosFil: Kundra, Vikas. University of Texas; Estados UnidosFil: Broom, Bradley M.. University of Texas; Estados UnidosFil: Corn, Paul G.. University of Texas; Estados UnidosFil: Troncoso, Patricia. University of Texas; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Logothethis, Christopher J.. University of Texas; Estados UnidosFil: Navone, Nora. University of Texas; Estados Unido

    The MD Anderson prostate cancer patient-derived xenograft series (MDA PCa PDX) captures the molecular landscape of prostate cancer and facilitates marker-driven therapy development

    Get PDF
    BACKGROUND: Advances in prostate cancer (PCa) lag behind other tumor types partly due to the paucity of models reflecting key milestones in PCa progression. OBJECTIVE: To develop clinically relevant PCa models. DESIGN: Since 1996 we have generated clinically annotated patient-derived xenografts (PDXs) (the MDA PCa PDX series) linked to specific phenotypes reflecting all aspects of clinical PCa. RESULTS: We studied two cell line-derived xenografts and the first 80 PDXs derived from 47 human PCa donors. Of these, 47 PDXs derived from 22 donors are working models and can be expanded either as cell lines (MDA PCa 2a and 2b) or PDXs. The histopathologic, genomic, and molecular characteristics (AR, ERG, and PTEN loss) maintain fidelity with the human tumor and correlate with published findings. PDX growth response to mouse castration and targeted therapy illustrate their clinical utility. Comparative genomic hybridization and sequencing show significant differences in oncogenic pathways in pairs of PDXs derived from different areas of the same tumor. We also identified a recurrent focal deletion in an area that includes the SPOPL gene in PDXs derived from 7 human donors out of 28 studied (25%). SPOPL is a SPOP paralog, and SPOP mutations define a molecular subclass of PCa. SPOPL deletions are found in 7% of TCGA PCas, which suggests that our cohort is a reliable platform for targeted drug development. CONCLUSIONS: The MDA PCa PDX series is a dynamic resource that captures the molecular landscape of PCas progressing under novel treatments and enables optimization of PCa-specific, marker-driven therapy

    New Dual Mode Gadolinium Nanoparticle Contrast Agent for Magnetic Resonance Imaging

    Get PDF
    BACKGROUND: Liposomal-based gadolinium (Gd) nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI) contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes) or presented on the surface of liposomes (surface-conjugated gadolinium liposomes). We hypothesized that a liposomal agent that contained both core-encapsulated gadolinium and surface-conjugated gadolinium, defined herein as dual-mode gadolinium (Dual-Gd) liposomes, would result in a significant improvement in nanoparticle-based T1 relaxivity over the previous generations of liposomal agents. In this study, we have developed and tested, both in vitro and in vivo, such a dual-mode liposomal-based gadolinium contrast agent. METHODOLOGY/PRINCIPAL FINDINGS: THREE TYPES OF LIPOSOMAL AGENTS WERE FABRICATED: core-encapsulated, surface-conjugated and dual-mode gadolinium liposomes. In vitro physico-chemical characterizations of the agents were performed to determine particle size and elemental composition. Gadolinium-based and nanoparticle-based T1 relaxivities of various agents were determined in bovine plasma. Subsequently, the agents were tested in vivo for contrast-enhanced magnetic resonance angiography (CE-MRA) studies. Characterization of the agents demonstrated the highest gadolinium atoms per nanoparticle for Dual-Gd liposomes. In vitro, surface-conjugated gadolinium liposomes demonstrated the highest T1 relaxivity on a gadolinium-basis. However, Dual-Gd liposomes demonstrated the highest T1 relaxivity on a nanoparticle-basis. In vivo, Dual-Gd liposomes resulted in the highest signal-to-noise ratio (SNR) and contrast-to-noise ratio in CE-MRA studies. CONCLUSIONS/SIGNIFICANCE: The dual-mode gadolinium liposomal contrast agent demonstrated higher particle-based T1 relaxivity, both in vitro and in vivo, compared to either the core-encapsulated or the surface-conjugated liposomal agent. The dual-mode gadolinium liposomes could enable reduced particle dose for use in CE-MRA and increased contrast sensitivity for use in molecular imaging

    Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells

    Get PDF
    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy

    Imaging Long-Term Fate of Intramyocardially Implanted Mesenchymal Stem Cells in a Porcine Myocardial Infarction Model

    Get PDF
    The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [18F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33–35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC–associated [18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI

    Signaling Can Be Uncoupled from Imaging of the Somatostatin Receptor Type 2

    No full text
    Endogenous and exogenous somatostatin receptors are commonly targeted for imaging using radiopharmaceutical analogues of somatostatin. Ligand binding activates receptor-mediated signaling. We assessed whether somatostatin receptor type 2A (SSTR2A) imaging can be uncoupled from signal transduction. In both human fibrosarcoma (HT1080) and human embryonic kidney (HEK293) cells, reverse transcriptase–polymerase chain reaction and enzyme-linked immunosorbent assay found similar levels of expression of hemagglutinin A tagged SSTR2A (HA-SSTR2A) or the same fusion protein with a deletion of the C-terminus beyond amino acid 314 (HA-SSTR2Δ314). Scatchard analysis demonstrated similar degrees of ligand binding by the wild-type or mutant receptor to 111In-octreotide in both cell pairs. Cyclic guanosine monophosphate (cGMP) production and inhibition of forskolin-induced cylic adenosine monophosphate (cAMP) production were evaluated at the signaling level, and growth inhibition was evaluated at the cellular level before and after stimulation. Unlike wild-type receptor, HA-SSTR2Δ314 was deficient in inhibiting forskolin-induced cAMP production (p < .05) and in inciting cGMP (p < .05) production; furthermore, at the cellular level, HA-SSTR2Δ314 was deficient in inhibiting cell proliferation (p < .05). Yet tumors expressing HA-SSTR2Δ314 could be imaged in vivo. Thus, in vivo imaging of SSTR2 can be uncoupled from cAMP and cGMP signaling as well as growth inhibition
    • …
    corecore