1,550 research outputs found

    Synthesis of composite hydrogels incorporating D,L-cyclic peptide nanotubes as a platform for materials engineering

    Get PDF
    Thesis (S.M.)--Harvard-MIT Program in Health Sciences and Technology, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 27-30).Composite hydrogels find increasing use as biomaterials because the addition of a filler often improves on the material properties of the original matrix, or provides new optical, magnetic, conductive or bioactive functionalities not inherent to the hydrogel. In this work we synthesized nanocomposite gelatin methacrylate (GelMA) hydrogels that incorporate D,L-cyclic peptide nanotubes. These nanotubes are biocompatible, stiff and their physical and chemical properties can be tailored simply by changing the amino acid sequence of the peptide. We show that the nanotubes successfully integrated into the hydrogel matrix and provided some mechanical reinforcement, without affecting hydrogel porosity or hydration characteristics. We will be using this composite system as a platform for engineering hydrogels with unique physical and biological properties to the hydrogel, for application as biological scaffolds.by Pei Kun Richie Tay.S.M

    (EMC)-M-3: Improving Energy Efficiency via Elastic Multi-Controller SDN in Data Center Networks

    Get PDF
    Energy consumed by network constitutes a significant portion of the total power budget in modern data centers. Thus, it is critical to understand the energy consumption and improve the power efficiency of data center networks (DCNs). In doing so, one straightforward and effective way is to make the size of DCNs elastic along with traffic demands, i.e., turning off unnecessary network components to reduce the energy consumption. Today, software defined networking (SDN), as one of the most promising solutions for data center management, provides a paradigm to elastically control the resources of DCNs. However, to the best of our knowledge, the features of SDN have not been fully leveraged to improve the power saving, especially for large-scale multi-controller DCNs. To address this problem, we propose (EMC)-M-3, a mechanism to improve DCN\u27s energy efficiency via the elastic multi-controller SDN. In (EMC)-M-3, the energy optimizations for both forwarding and control plane are considered by utilizing SDN\u27s fine-grained routing and dynamic control mapping. In particular, the flow network theory and the bin-packing heuristic are used to deal with the forwarding plane and control plane, respectively. Our simulation results show that E3MC can achieve more efficient power management, especially in highly structured topologies such as Fat-Tree and BCube, by saving up to 50% of network energy, at an acceptable level of computation cost

    On the Bethe states of the one-dimensional supersymmetric t-J model with generic open boundaries

    Full text link
    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the supersymmetric t-J model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T-Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe states which have well-defined homogeneous limit. This exact solution provides basis for further analyzing the thermodynamic properties and correlation functions of the model.Comment: 17 pages, 2 tables, published versio

    Differential Evolution with a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) data collection system, where a UAV is employed as a data collection platform for a group of ground IoT devices. Our objective is to minimize the energy consumption of this system by optimizing the UAV’s deployment, including the number and locations of stop points of the UAV. When using evolutionary algorithms to solve this UAV’s deployment problem, each individual usually represents an entire deployment. Since the number of stop points is unknown a priori, the length of each individual in the population should be varied during the optimization process. Under this condition, the UAV’s deployment is a variable-length optimization problem and the traditional fixed-length mutation and crossover operators should be modified. In this paper, we propose a differential evolution algorithm with a variable population size, called DEVIPS, for optimizing the UAV’s deployment. In DEVIPS, the location of each stop point is encoded into an individual, and thus the whole population represents an entire deployment. Over the course of evolution, differential evolution is employed to produce offspring. Afterward, we design a strategy to adjust the population size according to the performance improvement. By this strategy, the number of stop points can be increased, reduced, or kept unchanged adaptively. In DEVIPS, since each individual has a fixed length, the UAV’s deployment becomes a fixed-length optimization problem and the traditional fixed-length mutation and crossover operators can be used directly. The performance of DEVIPS is compared with that of five algorithms on a set of instances. The experimental studies demonstrate its effectiveness

    XRCC1, but not APE1 and hOGG1 gene polymorphisms is a risk factor for pterygium.

    Get PDF
    PurposeEpidemiological evidence suggests that UV irradiation plays an important role in pterygium pathogenesis. UV irradiation can produce a wide range of DNA damage. The base excision repair (BER) pathway is considered the most important pathway involved in the repair of radiation-induced DNA damage. Based on previous studies, single-nucleotide polymorphisms (SNPs) in 8-oxoguanine glycosylase-1 (OGG1), X-ray repair cross-complementing-1 (XRCC1), and AP-endonuclease-1 (APE1) genes in the BER pathway have been found to affect the individual sensitivity to radiation exposure and induction of DNA damage. Therefore, we hypothesize that the genetic polymorphisms of these repair genes increase the risk of pterygium.MethodsXRCC1, APE1, and hOGG1 polymorphisms were studied using fluorescence-labeled Taq Man probes on 83 pterygial specimens and 206 normal controls.ResultsThere was a significant difference between the case and control groups in the XRCC1 genotype (p=0.038) but not in hOGG1 (p=0.383) and APE1 (p=0.898). The odds ratio of the XRCC1 A/G polymorphism was 2.592 (95% CI=1.225-5.484, p=0.013) and the G/G polymorphism was 1.212 (95% CI=0.914-1.607), compared to the A/A wild-type genotype. Moreover, individuals who carried at least one C-allele (A/G and G/G) had a 1.710 fold increased risk of developing pterygium compared to those who carried the A/A wild type genotype (OR=1.710; 95% CI: 1.015-2.882, p=0.044). The hOGG1 and APE1 polymorphisms did not have an increased odds ratio compared with the wild type.ConclusionsXRCC1 (Arg399 Glu) is correlated with pterygium and might become a potential marker for the prediction of pterygium susceptibility

    An analytical solution for longitudinal impedance of a large-diameter floating pile in soil with radial heterogeneity and viscous-type damping

    Get PDF
    An analytical model is presented for solving the longitudinal complex impedance of a large-diameter floating pile in viscoelastic surrounding soil with radial heterogeneity and viscous-type damping, taking the effect of three-dimensional wave propagation of soil and lateral inertia of the pile shaft into account. The corresponding analytical solution for longitudinal impedance is also derived and validated via comparisons with existing solutions. The influences of the pile length, Poisson’s ratio of the pile shaft and the viscous damping coefficient, as well as the degree and radius of disturbed surrounding soil, on the longitudinal impedance of the pile shaft are examined by performing parametric analyses. It is demonstrated that the proposed analytical model and solution are suitable for the longitudinal vibration problem of a large-diameter pile and radially inhomogeneous surrounding soil, especially when the pile slenderness is low. In addition, the present solution can be easily degenerated to describe the longitudinal vibration problem relating to a large-diameter floating pile in radially homogenous soil or a pile with fixed-end support

    Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images

    Get PDF
    Conventional change detection approaches are mainly based on per-pixel processing, which ignore the sub-pixel spectral variation resulted from spectral mixture. Especially for medium-resolution remote sensing images used in urban land-cover change monitoring, land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution. Thus, traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably, degrading the overall accuracy of change detection. In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level, a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion. Nonlinear spectral mixture model is selected for spectral unmixing, and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple compositi..
    • …
    corecore