8,985 research outputs found
Damage growth in fibre bundle models with localized load sharing and environmentally-assisted ageing
Ferromagnetic Transition in One-Dimensional Itinerant Electron Systems
We use bosonization to derive the effective field theory that properly
describes ferromagnetic transition in one-dimensional itinerant electron
systems. The resultant theory is shown to have dynamical exponent z=2 at tree
leve and upper critical dimension d_c=2. Thus one dimension is below the upper
critical dimension of the theory, and the critical behavior of the transition
is controlled by an interacting fixed point, which we study via epsilon
expansion. Comparisons will be made with the Hertz-Millis theory, which
describes the ferromagnetic transition in higher dimensions.Comment: 4 pages. Presentation improved. Final version as appeared in PR
Thermalized non-equilibrated matter and high temperature superconducting state in quantum many-body systems
A characteristic feature of thermalized non-equilibrated matter is that, in
spite of energy relaxation--equilibration, a phase memory of the way the
many-body system was excited remains. As an example, we analyze data on a
strong forward peaking of thermal proton yield in the Bi(,p)
photonuclear reaction. New analysis shows that the phase relaxation in
highly-excited heavy nuclei can be 8 orders of magnitude or even much longer
than the energy relaxation. We argue that thermalized non-equilibrated matter
resembles a high temperature superconducting state in quantum many-body
systems. We briefly present results on the time-dependent correlation function
of the many-particle density fluctuations for such a superconducting state. It
should be of interest to experimentally search for manifestations of
thermalized non-equilibrated matter in many-body mesoscopic systems and
nanostructures.Comment: 12 pages, 1 eps figure. To be published in Radiation Effects and
Defects in Solid
Supersymmetry and Goldstino-like Mode in Bose-Fermi Mixtures
Supersymmetry is assumed to be a basic symmetry of the world in many high
energy theories, but none of the super partners of any known elementary
particle has been observed yet. We argue that supersymmetry can also be
realized and studied in ultracold atomic systems with a mixture of bosons and
fermions, with properly tuned interactions and single particle dispersion. We
further show that in such non-releativistic systems supersymmetry is either
spontaneously broken, or explicitly broken by a chemical potential difference
between the bosons and fermions. In both cases the system supports a sharp
fermionic collective mode or the so-called Goldstino, due to supersymmetry. We
also discuss possible ways to detect the Goldstino mode experimentally.Comment: 4 pages. V4: published versio
Slow cross-symmetry phase relaxation in complex collisions
We discuss the effect of slow phase relaxation and the spin off-diagonal
-matrix correlations on the cross section energy oscillations and the time
evolution of the highly excited intermediate systems formed in complex
collisions. Such deformed intermediate complexes with strongly overlapping
resonances can be formed in heavy ion collisions, bimolecular chemical
reactions and atomic cluster collisions. The effects of quasiperiodic energy
dependence of the cross sections, coherent rotation of the hyperdeformed
intermediate complex, Schr\"odinger cat states and
quantum-classical transition are studied for Mg+Si heavy ion
scattering.Comment: 10 pages including 2 color ps figures. To be published in Physics of
Atomic Nuclei (Yadernaya fizika
- …