We use bosonization to derive the effective field theory that properly
describes ferromagnetic transition in one-dimensional itinerant electron
systems. The resultant theory is shown to have dynamical exponent z=2 at tree
leve and upper critical dimension d_c=2. Thus one dimension is below the upper
critical dimension of the theory, and the critical behavior of the transition
is controlled by an interacting fixed point, which we study via epsilon
expansion. Comparisons will be made with the Hertz-Millis theory, which
describes the ferromagnetic transition in higher dimensions.Comment: 4 pages. Presentation improved. Final version as appeared in PR