32 research outputs found

    Quantifying the acute changes in glucose with exercise in type 1 Diabetes: a systematic review and meta-analysis

    Full text link
    Background The acute impact of different types of physical activity on glycemic control in type 1 diabetes has not been well quantified. Objectives Our objective was to estimate the rate of change (RoC) in glucose concentration induced acutely during the performance of structured exercise and at recovery in subjects with type 1 diabetes. Methods We searched for original articles in the PubMed, MEDLINE, Scopus, and Cochrane databases. Search terms included type 1 diabetes, blood glucose, physical activity, and exercise. Eligible studies (randomized controlled trials and non-randomized experiments) encompassed controlled physical activity sessions (continuous moderate [CONT], intermittent high intensity [IHE], resistance [RESIST

    Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial.

    Get PDF
    INTRODUCTION: Closed-loop (CL) systems modulate insulin delivery according to glucose levels without nurse input. In a prospective randomized controlled trial, we evaluated the feasibility of an automated closed-loop approach based on subcutaneous glucose measurements in comparison with a local sliding-scale insulin-therapy protocol. METHODS: Twenty-four critically ill adults (predominantly trauma and neuroscience patients) with hyperglycemia (glucose, ≥10 mM) or already receiving insulin therapy, were randomized to receive either fully automated closed-loop therapy (model predictive control algorithm directing insulin and 20% dextrose infusion based on FreeStyle Navigator continuous subcutaneous glucose values, n = 12) or a local protocol (n = 12) with intravenous sliding-scale insulin, over a 48-hour period. The primary end point was percentage of time when arterial blood glucose was between 6.0 and 8.0 mM. RESULTS: The time when glucose was in the target range was significantly increased during closed-loop therapy (54.3% (44.1 to 72.8) versus 18.5% (0.1 to 39.9), P = 0.001; median (interquartile range)), and so was time in wider targets, 5.6 to 10.0 mM and 4.0 to 10.0 mM (P ≤ 0.002), reflecting a reduced glucose exposure >8 and >10 mM (P ≤ 0.002). Mean glucose was significantly lower during CL (7.8 (7.4 to 8.2) versus 9.1 (8.3 to 13.0] mM; P = 0.001) without hypoglycemia (<4 mM) during either therapy. CONCLUSIONS: Fully automated closed-loop control based on subcutaneous glucose measurements is feasible and may provide efficacious and hypoglycemia-free glucose control in critically ill adults. TRIAL REGISTRATION: ClinicalTrials.gov Identifier, NCT01440842

    Pharmacokinetics of insulin aspart in pump-treated subjects with type 1 diabetes: reproducibility and effect of age, weight, and duration of diabetes.

    Get PDF
    Insulin aspart, lispro, or glulisine are recommended in pump-treated type 1 diabetes (T1D). Aspart pharmacokinetics has been studied (1), but little is known about its reproducibility and associations with anthropometric and clinical factors. We analyzed retrospectively data collected in 70 pump-treated subjects with T1D, comprising 39 females, 46 young, with mean (SD) BMI 22.7 (4.2) kg/m2, A1C 8.1% (1.3) (65.3 [14.4] mmol/mol), and total daily insulin 0.8 (0.3) units/kg/day, who were undergoing investigations, with ethical approval, of closed-loop insulin delivery. Participants/guardians signed consent/assent as appropriate. Participants were admitted twice to the research facility, 1–6 weeks apart, for 15–37 h, and consumed 1–4 meals accompanied by prandial insulin aspart. Basal aspart was delivered using closed-loop insulin delivery or conventional pump therapy. Venous blood samples were collected every 30–60 min to measure plasma insulin (Invitron, Monmouth, U.K.). From 5,804 plasma insulin measurements, we estimated, using a two-compartment model, the time-to-peak plasma insulin concentration (tmax [min]), the metabolic clearance rate of insulin (MCR in mL/kg/min), and the background residual plasma insulin concentration (mU/L). Results are presented in Table 1. Sex differences in aspart kinetics were not observed. Aspart pharmacokinetics was weakly influenced by common clinical and anthropometric factors, because less than 20% of intersubject variability was explained by sex, BMI, total daily dose, A1C, and diabetes duration

    Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: randomized clinical trial.

    Get PDF
    OBJECTIVE: We evaluated the safety and efficacy of closed-loop basal insulin delivery during sleep and after regular meals and unannounced periods of exercise. RESEARCH DESIGN AND METHODS: Twelve adolescents with type 1 diabetes (five males; mean age 15.0 [SD 1.4] years; HbA1c 7.9 [0.7]%; BMI 21.4 [2.6] kg/m(2)) were studied at a clinical research facility on two occasions and received, in random order, either closed-loop basal insulin delivery or conventional pump therapy for 36 h. During closed-loop insulin delivery, pump basal rates were adjusted every 15 min according to a model predictive control algorithm informed by subcutaneous sensor glucose levels. During control visits, subjects' standard infusion rates were applied. Prandial insulin boluses were given before main meals (50-80 g carbohydrates) but not before snacks (15-30 g carbohydrates). Subjects undertook moderate-intensity exercise, not announced to the algorithm, on a stationary bicycle at a 140 bpm heart rate in the morning (40 min) and afternoon (20 min). Primary outcome was time when plasma glucose was in the target range (71-180 mg/dL). RESULTS: Closed-loop basal insulin delivery increased percentage time when glucose was in the target range (median 84% [interquartile range 78-88%] vs. 49% [26-79%], P = 0.02) and reduced mean plasma glucose levels (128 [19] vs. 165 [55] mg/dL, P = 0.02). Plasma glucose levels were in the target range 100% of the time on 17 of 24 nights during closed-loop insulin delivery. Hypoglycemia occurred on 10 occasions during control visits and 9 occasions during closed-loop delivery (5 episodes were exercise related, and 4 occurred within 2.5 h of prandial bolus). CONCLUSIONS: Day-and-night closed-loop basal insulin delivery can improve glucose control in adolescents. However, unannounced moderate-intensity exercise and excessive prandial boluses pose challenges to hypoglycemia-free closed-loop basal insulin delivery

    Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial.

    Get PDF
    OBJECTIVE: To evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes. RESEARCH DESIGN AND METHODS: Overnight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12-18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h. RESULTS: Closed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range -9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range -4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop. CONCLUSIONS: Unsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.Supported by Juvenile Diabetes Research Foundation (#22-2006-1113, #22-2007-1801, #22-2009-801, #22-2009-802), Diabetes UK (BDA07/0003549), National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621), Medical Research Council Centre for Obesity and Related metabolic Diseases, and National Institute for Health Research Cambridge Biomedical Research Centre. Abbott Diabetes Care supplied continuous glucose delivery devices and sensors and modified devices to facilitate real-time connectivity.This is the final published version, also available from the American Diabetes Association at http://care.diabetesjournals.org/content/37/5/1204

    Restoration of self-awareness of hypoglycemia in adults with long-standing type 1 diabetes: hyperinsulinemic-hypoglycemic clamp substudy results from the HypoCOMPaSS trial.

    Get PDF
    OBJECTIVE: Impaired awareness of hypoglycemia (IAH) and defective counterregulation significantly increase severe hypoglycemia risk in type 1 diabetes (T1D). We evaluated restoration of IAH/defective counterregulation by a treatment strategy targeted at hypoglycemia avoidance in adults with T1D with IAH (Gold score ≥4) participating in the U.K.-based multicenter HypoCOMPaSS randomized controlled trial. RESEARCH DESIGN AND METHODS: Eighteen subjects with T1D and IAH (mean ± SD age 50 ± 9 years, T1D duration 35 ± 10 years, HbA1c 8.1 ± 1.0% [65 ± 10.9 mmol/mol]) underwent stepped hyperinsulinemic-hypoglycemic clamp studies before and after a 6-month intervention. The intervention comprised the HypoCOMPaSS education tool in all and randomized allocation, in a 2 × 2 factorial study design, to multiple daily insulin analog injections or continuous subcutaneous insulin infusion therapy and conventional glucose monitoring or real-time continuous glucose monitoring. Symptoms, cognitive function, and counterregulatory hormones were measured at each glucose plateau (5.0, 3.8, 3.4, 2.8, and 2.4 mmol/L), with each step lasting 40 min with subjects kept blinded to their actual glucose value throughout clamp studies. RESULTS: After intervention, glucose concentrations at which subjects first felt hypoglycemic increased (mean ± SE from 2.6 ± 0.1 to 3.1 ± 0.2 mmol/L, P = 0.02), and symptom and plasma metanephrine responses to hypoglycemia were higher (median area under curve for symptoms, 580 [interquartile range {IQR} 420-780] vs. 710 [460-1,260], P = 0.02; metanephrine, 2,412 [-3,026 to 7,279] vs. 5,180 [-771 to 11,513], P = 0.01). Glycemic threshold for deterioration of cognitive function measured by four-choice reaction time was unchanged, while the color-word Stroop test showed a degree of adaptation. CONCLUSIONS: Even in long-standing T1D, IAH and defective counterregulation may be improved by a clinical strategy aimed at hypoglycemia avoidance

    Home use of closed loop insulin delivery improves overnight glucose control in adults with type 1 diabetes: A four-week multicentre randomised crossover study

    Get PDF
    This is the author accepted manuscript and will be embargoed until 16/12/14. The final published version can be found here: http://www.thelancet.com/journals/landia/article/PIIS2213-8587(14)70114-7/fulltext#article_upsell.Background: We assessed whether overnight home use of automated closed loop insulin delivery (artificial pancreas) improves glucose control. Methods: We studied 24 adults with type 1 diabetes in a multicentre crossover study design comparing four weeks of overnight closed loop using a model predictive control algorithm to direct insulin delivery, with four weeks of insulin pump therapy in which participants used real-time display of continuous glucose monitoring independent of their pumps as control. Primary outcome was time when glucose was in the target range of 3•9 and 8•0mmol/l between midnight to 07:00. Analyses were by intention to treat. Trial registration ClinicalTrials.gov NCT01440140. Findings: Closed loop was utilised over median 8•3 (interquartile range 6•0, 9•6)hours on 555nights (86%). Proportion of time when overnight glucose was in target range was significantly higher during closed loop compared to control by 13•5% (95% CI, 7•3-19•7; p<0•001). Mean overnight glucose (8•2±0•9 vs. 9•0±1•3mmol/l; p=0•005) and time spent above target (44•3%±11•9 vs. 57•1%±15•6; p=0•001) were significantly lower during closed loop. Time spent below target was low and comparable [1•8%( 0•6, 3•6) vs. 2•1%(0•7, 3•9);p=0•28]. Lower mean overnight glucose was brought about by increased overnight insulin delivery [6•4 (4•5, 8•1) vs. 4•9 (3•7, 6•3)units;p<0•001) without changing the total daily insulin amount [34•5 (29•3, 48•4) vs. 35•4 (29•7, 45•2)units;p=0•32]. No severe hypoglycaemia episodes occurred during control period and two during closed loop not related to algorithm instructions. Interpretation: Unsupervised overnight closed loop at home is feasible and may improve glucose control in adults with type 1 diabetes

    Day and night closed-loop control in adults with type 1 diabetes: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management.

    Get PDF
    OBJECTIVE: To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS: This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS: Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS: Both CAM and iAP algorithms provide safe glycemic control
    corecore