77,666 research outputs found
The OSU 275 system of satellite tracking station coordinates
A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems
Geometric adjustment of the South American satellite densification (PC-1000) network
Reduced normal equations were computed from observation data and combined with reduced normal equations of other satellite networks to provide station coordinates from a single least square adjustment. Terrestrial data, which include base-lines, heights, and survey coordinates, provide the necessary relative position constraints between collocated stations of two satellite networks. Survey information regarding the observation stations is summarized, and constraints used in the solution are given. Geoidal undulations are computed by using the formula and constants shown
Magnetic fluxes and moduli stabilization
Stabilization of closed string moduli in toroidal orientifold
compactifications of type IIB string theory are studied using constant internal
magnetic fields on D-branes and 3-form fluxes that preserve N=1 supersymmetry
in four dimensions. Our analysis corrects and extends previous work by us, and
indicates that charged scalar VEV's need to be turned on, in addition to the
fluxes, in order to construct a consistent supersymmetric model. As an explicit
example, we first show the stabilization of all Kahler class and complex
structure moduli by turning on magnetic fluxes on different sets of D9-branes
that wrap the internal space T^6 in a compactified type I string theory, when a
charged scalar on one of these branes acquires a non-zero VEV. The latter can
also be determined by adding extra magnetized branes, as we demonstrate in a
subsequent example. In a different model with magnetized D7-branes, in a IIB
orientifold on T^6/Z_2, we show the stabilization of all the closed string
moduli, including the axion-dilaton at weak string coupling g_s, by turning on
appropriate closed string 3-form fluxes.Comment: v2: minor changes, added discussio
Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV)
centers in diamond crystals make them one of the most promising quantum
emitters operating at room temperature. We demonstrate a chip-integrated
cavity-coupled emission into propagating surface plasmon polariton (SPP) modes
narrowing NV center's broad emission bandwidth with enhanced coupling
efficiency. The cavity resonator consists of two distributed Bragg mirrors that
are built at opposite sides of the coupled NV emitter and are integrated with a
dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of
hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A
quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with
full tunability of the resonance wavelength is demonstrated. An up to 42-fold
decay rate enhancement of the spontaneous emission at the cavity resonance is
achieved, indicating high DLSPPW mode confinement
Line asymmetry of solar p-modes: Reversal of asymmetry in intensity power spectra
The sense of line asymmetry of solar p-modes in the intensity power spectra
is observed to be opposite of that seen in the velocity power spectra.
Theoretical calculations provide a good understanding and fit to the observed
velocity power spectra whereas the reverse sense of asymmetry in the intensity
power spectrum has been poorly understood. We show that when turbulent eddies
arrive at the top of the convection zone they give rise to an observable
intensity fluctuation which is correlated with the oscillation they generate,
thereby affecting the shape of the line in the p-mode power spectra and
reversing the sense of asymmetry (this point was recognized by Nigam et al. and
Roxburgh & Vorontsov). The addition of the correlated noise displaces the
frequencies of peaks in the power spectrum. Depending on the amplitude of the
noise source the shift in the position of the peak can be substantially larger
than the frequency shift in the velocity power spectra. In neither case are the
peak frequencies precisely equal to the eigenfrequencies of p-modes. We suggest
two observations which can provide a test of the model discussed here.Comment: Revised version. To appear in Ap
Pathwise Performance of Debt Based Policies for Wireless Networks with Hard Delay Constraints
Hou et al have introduced a framework to serve clients over wireless channels
when there are hard deadline constraints along with a minimum delivery ratio
for each client's flow. Policies based on "debt," called maximum debt first
policies (MDF) were introduced, and shown to be throughput optimal. By
"throughput optimality" it is meant that if there exists a policy that fulfils
a set of clients with a given vector of delivery ratios and a vector of channel
reliabilities, then the MDF policy will also fulfill them. The debt of a user
is the difference between the number of packets that should have been delivered
so as to meet the delivery ratio and the number of packets that have been
delivered for that client. The maximum debt first (MDF) prioritizes the clients
in decreasing order of debts at the beginning of every period. Note that a
throughput optimal policy only guarantees that \begin{small} \liminf_{T \to
\infty} \frac{1}{T}\sum_{t=1}^{T} \mathbbm{1}\{\{client nt} \} \geq q_{i} \end{small}, where the right hand side
is the required delivery ratio for client . Thus, it only guarantees that
the debts of each user are , and can be otherwise arbitrarily large. This
raises the interesting question about what is the growth rate of the debts
under the MDF policy. We show the optimality of MDF policy in the case when the
channel reliabilities of all users are same, and obtain performance bounds for
the general case. For the performance bound we obtain the almost sure bounds on
for all , where
A High Reliability Asymptotic Approach for Packet Inter-Delivery Time Optimization in Cyber-Physical Systems
In cyber-physical systems such as automobiles, measurement data from sensor
nodes should be delivered to other consumer nodes such as actuators in a
regular fashion. But, in practical systems over unreliable media such as
wireless, it is a significant challenge to guarantee small enough
inter-delivery times for different clients with heterogeneous channel
conditions and inter-delivery requirements. In this paper, we design scheduling
policies aiming at satisfying the inter-delivery requirements of such clients.
We formulate the problem as a risk-sensitive Markov Decision Process (MDP).
Although the resulting problem involves an infinite state space, we first prove
that there is an equivalent MDP involving only a finite number of states. Then
we prove the existence of a stationary optimal policy and establish an
algorithm to compute it in a finite number of steps.
However, the bane of this and many similar problems is the resulting
complexity, and, in an attempt to make fundamental progress, we further propose
a new high reliability asymptotic approach. In essence, this approach considers
the scenario when the channel failure probabilities for different clients are
of the same order, and asymptotically approach zero. We thus proceed to
determine the asymptotically optimal policy: in a two-client scenario, we show
that the asymptotically optimal policy is a "modified least time-to-go" policy,
which is intuitively appealing and easily implementable; in the general
multi-client scenario, we are led to an SN policy, and we develop an algorithm
of low computational complexity to obtain it. Simulation results show that the
resulting policies perform well even in the pre-asymptotic regime with moderate
failure probabilities
Shear-strain-induced Spatially Varying Super-lattice Structures on Graphite studied by STM
We report on the Scanning Tunneling Microscope (STM) observation of linear
fringes together with spatially varying super-lattice structures on (0001)
graphite (HOPG) surface. The structure, present in a region of a layer bounded
by two straight carbon fibers, varies from a hexagonal lattice of 6nm
periodicity to nearly a square lattice of 13nm periodicity. It then changes
into a one-dimensional (1-D) fringe-like pattern before relaxing into a
pattern-free region. We attribute this surface structure to a shear strain
giving rise to a spatially varying rotation of the affected graphite layer
relative to the bulk substrate. We propose a simple method to understand these
moire patterns by looking at the fixed and rotated lattices in the Fourier
transformed k-space. Using this approach we can reproduce the spatially varying
2-D lattice as well as the 1-D fringes by simulation. The 1-D fringes are found
to result from a particular spatial dependence of the rotation angle.Comment: 14 pages, 6 figure
- …
