GEOMETRIC ADJUSTMENT OF THE SOUTH AMERICAN SATELLITE DENSIFICATION (PC-1000) NETWORK

by
Ivan I. Mueller and M. Kumar

Prepared for
National Aeronautics and Space Administration
Washington, D. C.

Contract No. NGR 36-008-093 OSURF Project No. 2514

The Ohio State University
Research Foundation
Columbus, Ohio 43212

February, 1973

Reports of the Department of Geodetic Science
Report No. 196

GEOMETRIC ADJUSTMENT OF THE SOUTH AMERICAN SATELLITE DENSIFICATION (PC-1000) NETWORK

by

Ivan I. Mueller and M. Kumar

Prepared for
National Aeronautics and Space Administration Washington, D. C.

Contract No. NGR 36-008-093
OSURF Project No. 2514

The Ohio State University
Research Foundation
Columbus, Ohio 43212

February, 1973

PREFACE

This project is under the supervision of Ivan I. Mueller, Professor of the Department of Geodetic Science at The Ohio State University, and is under the technical direction of James P. Murphy, Special Programs, Code ES, NASA Headquarters, Washington, D. C. The contract is administered by the Office of University Affairs, NASA, Washington, D. C. 20546.

TABLE OF CONTENTS
Page No.
PREFACE ii
TABLE OF CONTENTS iii

1. INTRODUCTION 1
2. DATA 1
2.1 Terrestrial Data 1
2.2 Satellite Observational Data 6
3. THEORETICAL BACKGROUND 6
3.1 Normal Equations for Optical Observations 6
3.2 Constraint's Contributions to Normal Equations 8
3.21 General 8
3.22 Relative Position Constraints 10
3.23 Length (Chord) Constraints 11
3.24 Station Position Constraints 12
3.25 Height Constraints 13
3.26 Inner Adjustment Constraints 13
4. THE SOLUTION 16
5. COMPARISON WITH OTHER SOLUTIONS 20
6. REFERENCES 25

1. INTRODUCTION

The basic purpose of this experiment is to compute reduced normal equations from the observational data of the South American Satellite Densification (PC-1000) Network obtained from the Defense Mapping Agency Aerospace Center, St. Louis. These reduced normal equations are to be combined with reduced normal equations of other satellite networks of National Geodetic Satellite Program [Mueller et al., 1973] so as to provide station coordinates from a single least square adjustment.

Details of this network, including instrumentation, are given in Huber [1971].

2. DATA

2.1 Terrestrial Data

Terrestrial data, which include base-lines, heights and survey coordinates of stations, provide the necessary relative position constraints between "collocated" stations of BC-4 World-net and the South-American Densification Net (Figure 1). Survey information regarding the observation stations is summarized in Table 2.1-1. Constraints used in this solution are given in Tables 2.1-2, 2.1-3, 2.1-4 and 2.1-5 [Mueller, et al. 1973]. Geoidal undulations (Table 2.1-5) are computed by using formula and constants as given in [Rapp, 1973].

Fig. 1 South American densification net.

Table 2.1-1

SURVEY INFORMATION OF ORSERVATION STATIONS

* insufficient data

1 DATUM CODE :

$$
\begin{array}{llll}
29-= & \text { NAD } & 1927 \\
41- & \text { SAD } & 1969
\end{array}
$$

2 GEODETIC COORDINATES OF THE INSTRUMENTAL REFERENCE POINT (OPTICAL/ELECTRONIC CENTER,ETC.) ON THE LOCAL GEODETIC DATUM
3 méan seá level height of the instrumental reference point
4 HEIGHT OF INSTRUMENTAL REFERENCE POINT ABOVE SURVEY MONUMENT
5 SOURCE CODE :
$1-(\csc , 1971)$
$2-(C S C, 1972 / 73)$
$3-(H U B E R, 1971)$
NOTE : ZERO IN THE LAST DIGIT MAY INDICATE THAT THE DIGIT IS UNKNOWN.

Table 2.1-2

Relative Position Constraints

Stations	Relative Coordinates (Meters)		Weights $\left(1 / \sigma^{2}\right)$	
	$\Delta \mathrm{u}$	$\Delta \mathrm{v}$	$\Delta \mathrm{w}$	
$3413-6067$	-48.64	-289.13	1258.05	3.00
$3476-6008$	36.31	22.94	-20.80	3.00
$3499-6009$	0.00	0.00	0.00	100.00

Table 2.1-3
Station Position Constraints

Stations	Station Coordinates (Meters)			Weights		
	u	v	w	p_{u}	p_{v}	$\mathrm{p}_{\text {w }}$
6002	1130764.85	-4830 831.87	3994704.05	0.2415	0.3425	0.2725
6008	3623241.00	-5214233.74	601536.05	0.2212	0.2591	0.1163
6009	1280834.24	-6250 955.94	-10 800.59	0.0776	0.0852	0.0593
6019	2280627.09	-4914 543.17	3355402.77	0.1779	0.1366	0.0741
6067	5186397.12	-3653 933.25	-654 276.92	0.2315	0.2160	0.1464

Weights $\left({ }^{2} / \sigma^{2}\right)$ based as per variances obtained in OSU WN14 Solution [Mueller et al., 1973]

Table 2.1-4
Chord Constraint

Station-Station	Chord Distance (Meters)	$\sigma \times 10^{6}$
$6009-6067$	4734132.44	1.00

The chord length and the sigma were computed from the adjusted coordinates of the stations from OSU WN14 Solution [Mueller et al., 1973]

Table 2.1-5
Geoidal Undulations and Heights Used in the Constraints

STATION		$\text { NREF }{ }^{1}$ (m)	$\mathrm{HCONSTR}^{2}$ (m)	$\sigma_{\mathrm{HCON}}-$
NO.	NAME			(m)
3406	Curacao	-29.19	-41.02	4.0
3407	Trinidad	-38.57	194.88	4.0
3413	Natal	-12.03	-5.87	6.0
3414	Brasilia	-9.88	1021.23	6.0
3431	Asuncion	11.98	137.72	6.0
3476	Paramaribo	-28.31	-34.02	6.0
3477	Bogota	10.71	2551.44	6.0
3478	Manaus	-7.17	53.63	6.0
3499	Quito	16.73	2682.74	6.0
6002	Beltsville	-36.90	-6.73	2.5
6008	Paramaribo	-28.31	-33.91	4.0
6009	Quito	16.73	2683.04	6.0
6019	Villa Dolores	22.80	609.43	6.0
6067	Natal	-12.03	-2.14	6.0

1. From [Rapp, 1973]
2. $\mathbf{H C O N S T R}=\mathrm{MSL}+\mathrm{NREF}+\Delta \mathrm{N}$, where $\Delta \mathrm{N}$ is a correction term for the differences of position and size of the ellipsoids used [Mueller et al., 1973]
3. Used in Computing the Weights of the Height Constraints

2.2 Satellite Observational Data

Data of South America Densification Net was obtained from the Defense Mapping Agency/Aerospace Center, St. Louis, Missouri. This data, which is a punched card-deck, is used without any modification. No major blunders are detected. (See Table 2.2-1)

3. THEORETICAL BACKGROUND

3.1 Normal Equations for Optical Observations

A set of reduced normal equations of the form $\overline{\mathrm{N}} \mathrm{X}+\overline{\mathrm{U}}=0$
is obtained from the optical observations. The symmetric coefficient matrix is composed of 3×3 blocks of the form [Mueller, 1968]
where

$$
\begin{aligned}
& M_{1 j}=B_{1 j} P_{1 j}^{2} B_{1 j}^{\prime} \\
& B_{1 j}=\operatorname{SR}_{3}(-\alpha) R_{2}\left(-90^{\circ}+\delta\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\cos \delta & 0 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

$$
S \quad=\text { Polar motion matrix }
$$

and
k,1 Denotes particular ground stations
s Denotes particular simultaneous event
1 Denotes any ground station participating in an event
$\sum_{1} \quad$ Is the summation over all ground stations involved in event s
$\sum_{5} \quad$ Is the summation over all events observed by ground station k and/or 1
$\underset{3 \times 3}{P_{k}} \quad$ Weight matrix associated with any particuiar ground station
$\underset{3 \times 3}{\mathrm{P}_{1} 9} \quad$ Weight matrix of any observed direction

$$
\begin{aligned}
& \underset{3 \times 3}{\bar{N}_{k k}}=\underset{j}{ } M_{k j}^{-1}-\underset{j}{\Sigma M_{k j}^{-1}} \underset{1}{\left(\sum M_{1 j}^{-1}\right)^{-1}} M_{k j}^{-1}+P_{k} \\
& \left.\underset{3 \times 3}{{\underset{N}{k}}^{1}}=-\sum_{j} M_{k j}^{-1} \underset{i}{\left(\sum M_{j} j^{-1}\right.}\right)^{-1} M_{1 j}^{-1}
\end{aligned}
$$

Table 2.2-1
Summary of Simultaneous Observations by Line (SA Network)

Line Station-Station	No. of Pairs	Line	
Station-Station	No. of Pairs		
$6002-6008$	23	$3406-3478$	
$6002-3406$	14	$3406-3499$	4
$6002-3407$	11	$3407-3431$	16
$6002-3476$	7	$3407-3476$	19
$6002-3477$	7	$3407-3477$	23
$6008-6009$	10	$3407-3478$	9
$6008-6019$	36	$3413-3414$	29
$6008-6067$	14	$3413-3431$	2
$6008-3406$	26	$3414-3431$	22
$6008-3477$	3	$3476-3477$	15
$6008-3478$	-		
$6009-6019$	6	$3477-3478$	2
$6009-3406$	7	$3477-3499$	5
$6009-3407$	14		
$6009-3476$	6		
$6009-3477$	6		
$6009-3499$	5		
$6019-6067$	9		
$6019-3406$	19		
$6019-3407$	38		
$6019-3431$	4		
$6019-3476$	19		
$6019-3477$	6		
$6067-3407$	3		
$3406-3407$	9		
$3406-3413$	25		
$3406-3414$	53		
$3406-3431$	20		
$3406-3476$			

Finally, the vector of constant terms is expressed by

$$
\overline{\mathrm{U}}_{\mathrm{k}}=\sum_{\mathfrak{j}} \mathrm{M}_{k} \xi^{-1}\left[\mathrm{X}_{\mathrm{k}}^{\circ}-\left(\sum \mathrm{M}_{2} j^{-1}\right)^{-1} \sum_{!} \mathrm{M}_{1} j^{-1} \mathrm{X}_{1}^{o}\right]
$$

where as usual, the superscript (${ }^{\circ}$) denotes initial approximate values.

3.2 "Constraints" Contributions to the Normal Equations

3.21 General

Since the coefficient matrix of normal equations is singular, a unique least squares solution is not possible. A minimal set of constraints to the normal equations provides a unique solution [Blaha, 1971].

Two alternative definitions exist for the term "constraints". The absolute constraints represent certain conditions which have to be fulfilled exactly and with no uncertainties while the relative constraints (or weighted constraints) have the same characteristics as the observations.

In general the contribution of the functional constraint equations

$$
\mathrm{G}\left(\mathrm{X}, \mathrm{~L}_{\mathrm{c}}\right)=0
$$

to the normal equations can be found by bordering the normal equations matrix

$$
\left|\begin{array}{cc}
\overline{\mathrm{N}} & \mathrm{C}^{\prime} \\
\mathrm{C} & -\mathrm{P}_{\mathrm{C}}^{-1}
\end{array}\right|\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{~K}_{\mathrm{C}}
\end{array}\right|+\left|\begin{array}{c}
\overline{\mathrm{U}} \\
\mathrm{~W}^{\dot{c}}
\end{array}\right|=0 \text {, where } \mathrm{C}=\frac{\partial \mathrm{G}}{\partial \mathrm{X}} .
$$

After elimination of K_{c}, it is easy to find

$$
\left[\overline{\mathrm{N}}+\mathrm{C}^{\prime} \mathrm{P}_{\mathrm{C}} \mathrm{C}\right] \mathrm{X}+\overline{\mathrm{U}}+\mathrm{C}^{\prime} \mathrm{P}_{\mathrm{C}} \mathrm{~W}^{\mathrm{C}}=0
$$

or

$$
\begin{equation*}
\left[\overline{\mathrm{N}}+\mathrm{N}^{\mathrm{C}}\right] \mathrm{X}+\overline{\mathrm{U}}+\mathrm{U}^{\complement}=0 \tag{1}
\end{equation*}
$$

where N^{C} and U^{C} are the contributions to the coefficient matrix and constant vector of the normal equations due to the application of constraints. The quantities $\overline{\mathrm{N}}$ and $\overline{\mathrm{U}}$ correspond to the original normal equations without constraints (Section 3.1).

After the constraints are added the normal equations will take the usual form

$$
N X+U=0
$$

and we are in the position to obtain the contribution from a new set of constraints.

Constraints can be applied between two station k and 1 or to a single station. The contribution of these constraints to the matrix $\overline{\mathrm{N}}(3 \times 3)$ blocks $)$ and $\overline{\mathrm{U}}$ (3×1 blocks) can be schematically expressed in two different ways. Assuming that the matrix P_{c} is always diagonal it is possible to express:
(a) Contribution to the normals due to the constraint applied to station k

(b) Contribution to the normals due to the constraint between stations k and 1

These blocks obtained as indicated above for the corresponding case will be the only ones computed and added to the original normal equations as expressed by formula (1).

3.22 Relative Position Constraints

Relative position constraints are used in order to combine the normal equations obtained from various satellite nets and to constrain "double" stations or closely situated stations of the same net. The expression for the combination of normals can be written as follows:

$$
\left[\overline{\mathrm{N}}+\mathrm{N}^{R}\right] \mathrm{X}+\overline{\mathrm{U}}+\mathrm{U}^{R}=0
$$

where N^{R} and U^{R}, computed from (2a), (2b), are the contribution to the original normal equations ($\overline{\mathrm{N}} \mathrm{X}+\overline{\mathrm{U}}=0$).

If the relative position ($\Delta u^{\circ}, \Delta v^{\circ}, \Delta w^{\circ}$) of two stations is known, along with the standard deviation of these relative positions, the constraints can be formed. In this case the functional constraint equations are

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{k}}^{\circ}-\mathrm{u}_{\mathrm{l}}^{\circ}=\Delta \mathrm{u}^{\circ} \\
& \mathrm{v}_{\mathrm{k}}^{\circ}-\mathrm{v}_{\mathrm{l}}^{\circ}=\Delta \mathrm{v}^{\circ} \\
& \mathrm{w}_{\mathrm{k}}^{\circ}-\mathrm{w}_{\mathrm{l}}^{\circ}=\Delta \mathrm{w}^{\circ}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{k}}^{\mathrm{R}}=\mathrm{I} ; \mathrm{C}_{1}^{\mathrm{C}}=\underset{3 \times 3}{\mathrm{C}}=-\mathrm{I} \\
& 3 \times 3
\end{aligned}
$$

and

$$
\underset{3 \times \mathrm{I}}{\mathrm{U}_{\mathrm{k}}^{\mathrm{R}}}=0 ; \underset{3 \times 1}{\mathrm{U}_{1}^{\mathrm{A}}}=0 \text { because } \mathrm{W}^{\mathrm{A}}=\mathrm{G}^{\mathrm{R}}\left(\mathrm{X}^{\circ}, \mathrm{L}_{c}^{0}\right)=0
$$

where

$$
P_{R}=\left|\begin{array}{ccc}
\frac{1}{\sigma_{\Delta u^{\circ}}^{2}} & 0 & 0 \\
0 & \frac{1}{\sigma_{\Delta v^{0}}^{2}} & 0 \\
0 & 0 & \frac{1}{\sigma_{\Delta w^{\circ}}^{2}}
\end{array}\right|
$$

and

$$
\begin{aligned}
& \underset{3 \times 3}{N_{k}^{R}}=I P_{R} I=\underset{3 \times 3}{P_{R}} \\
& \underset{3 \times 3}{N_{1}^{R}}=I P_{R} I=\underset{3 \times 3}{P_{R}} \\
& \frac{\mathrm{~N}_{k}^{R}}{N_{1}}=\underset{3 \times 3}{N_{1 K}^{R}}=I P_{R}(-1)=-\underset{3 \times 3}{N_{R}}
\end{aligned}
$$

Thus, the diagonal elements of P_{h} are added to each element of the diagonal of the blocks $k k$ and 11 of the matrix of the combined normals $\overline{\mathrm{N}}$, and subtracted from the diagonal elements of the blocks $k 1$ and $1 k$ of $\overline{\mathrm{N}}$. There is no contribution to the vector \bar{U}.

3.23 Length (Chord) Constraints

Chord constraints are introduced when scalar information is available between ground stations (e.g., distances determined through high precision geodimeter traversing). The functional constraint equation in this case is

$$
G^{c}\left(X, L_{c}\right)=0
$$

or

$$
\begin{align*}
& {\left[\left(u_{k}-u_{1}\right)^{2}+\left(v_{k}-v_{1}\right)^{2}+\left(w_{k}-w_{1}\right)^{2}\right]^{\frac{1}{2}}=L_{k 1}} \tag{3}\\
& \underset{1 \times 3}{{\underset{1}{k}}_{0}^{c}}=\left[\frac{u_{k}^{0}-u_{1}^{0}}{L_{k}^{0}}, \frac{v_{k}^{0}-v_{1}^{0}}{L_{k}^{0}}, \frac{w w_{k}^{0}-w_{1}^{0}}{L_{k}^{\circ}}\right]
\end{align*}
$$

and

$$
\underset{1 \times 3}{C_{1}^{c}}=-\left[\frac{u_{K}^{\circ}-u_{1}^{o}}{L_{K_{1}}^{\circ}}, \frac{v_{k}^{0}-v_{1}^{0}}{L_{K 1}^{0}}, \frac{w_{k}^{0}-w_{L}^{0}}{L_{K 1}^{0}}\right]
$$

and

$$
P_{c}^{-1}=\frac{\sigma_{K 1}^{2}}{\sigma_{0}^{2}}=\frac{\text { variance of the chord }}{\text { a priori variance of unit weight }}
$$

Then the contribution to the normals are obtained by applying (2a) and (2b)
as under:

$$
\begin{aligned}
& \underset{3 \times 3}{N_{k}^{C}}=\left(C_{K}^{C}\right)^{\prime} P_{C} C_{K}^{C} \\
& \underset{3 \times 3}{N_{11}^{c}}=\left(C_{1}^{c}\right)^{\prime} P \text { Pr Cl} \\
& \underset{3 \times 3}{\mathrm{~N}_{\mathrm{K} 1}^{\mathrm{C}}}=\left(\mathrm{C}_{\mathrm{K}}^{\mathrm{C}}\right)^{\prime} \mathrm{P}_{\mathrm{c}} \mathrm{C}_{1}^{\mathrm{c}}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{3 \times 3}{\mathrm{U}_{\mathrm{L}}^{\mathrm{C}}}=\left(\mathrm{C}_{1}^{\mathrm{c}}\right)^{\prime} \mathrm{P}_{\mathrm{t}} \mathrm{~W}^{\mathrm{C}}
\end{aligned}
$$

The first three expressions in the above are added respectively to the blocks N_{k}, N_{11} and $N_{k 1}$ of \bar{N}; the last two expressions are added respectively to the constant vectors U_{k} and U_{1} of $\overline{\mathrm{U}}$.

3.24 Station Position Constraints

Station position constraint is used for the purpose of defining the origin of the coordinate system. If the station coordinates ($u_{k}^{\circ}, v_{k}^{\circ}$, w_{k}°) of station k are to be constrained and if the computed (known) variances of its known coordinates are $\sigma_{u_{k}^{o}}^{2}, \sigma_{v_{k}^{o}}^{2}, \sigma_{u_{k}^{o}}^{2}$, then the equations given in section 3.22 are valid by merely deleting the terms with index 1 , i.e., $\Delta u^{\circ}=u_{k}^{\circ}$, $\Delta v^{\circ}=v_{k}^{\circ}, \Delta w_{k}^{\circ}=w_{k}^{\circ}$. Hence

$$
\underset{3 \times 3}{\mathrm{~N}_{\mathrm{KK}}^{S}}=\mathrm{I} \mathrm{P}_{\mathrm{S}} \mathrm{I}=\underset{3 \times 3}{\mathrm{P}_{\mathrm{S}}}
$$

where

$$
P_{s}=\left[\begin{array}{ccc}
\frac{1}{\sigma_{u k}^{2}} & 0 & 0 \\
0 & \frac{1}{\sigma_{v_{k}^{\prime}}^{2}} & 0 \\
0 & 0 & \frac{1}{\sigma_{w_{k}^{\circ}}^{2}}
\end{array}\right]
$$

If the geodetic (ellipsoidal) heights H_{k} of the station k is to be constrained, then

$$
\underset{\substack{\times 3}}{N_{k K}^{H}}=\left(C_{k}^{H}\right)^{\prime} P_{H} C_{k}^{H}
$$

where

$$
\underset{1 \times 3}{\mathrm{C}_{k}^{H}}=\left[\cos \varphi_{k}^{\circ} \cos \lambda_{k}^{\circ}, \cos \varphi_{k}^{\circ} \sin \lambda_{k}^{\circ}, \sin \varphi_{k}^{\circ}\right]
$$

and

$$
P_{H}=\frac{1}{\sigma_{H_{K}}^{2}}
$$

Here φ_{k}° and $\lambda_{k}{ }^{\circ}$ are the approximate geodetic coordinates and $\sigma_{H k}^{2}$ is the variance of the height for station k.

The constant vector $\mathrm{U}_{\mathrm{k}}^{\mathrm{H}}$ can be computed from

$$
U_{k}^{H}=\left(C_{k}^{H}\right)^{\prime} P_{H} W^{H}
$$

where

$$
\mathrm{W}^{H}=H_{k}-H_{k}^{\circ}, H_{k}^{\circ} \text { being the approximate height. }
$$

3.26 Inner Constraints (Free Adjustment)

Even though the selection of a coordinate system is arbitrary in the case of a minimum constraint adjustment, e.g., in the case of ranging, the selection of the six coordinates (at more than two stations) to be constrained is very critical, since one set of constraints would give a different solution than another set. The "best" solution is arrived at in a coordinate system defined through the use of a set of constraint equations called "inner" constraints [Rinner et al., 1967]. In this sense, 'best" means resulting in the smallest covariance matrix for the unknowns. Covariance matrices may be compared by means of their traces, and the inner constraint equations are characterized by the property that the trace of the covariance matrix obtained with their use is a minimum among those obtained by adjusting a given set of observations augmented by a minimal set of constraint equations. This property also implies that the mean square uncertainty of the
unknowns is smaller when the inner adjustment equations are used. The resulting adjustment is called a "free" one. The functional inner constraints equations can be written as

$$
C^{I} X=0
$$

where X is the set of corrections of the approximate coordinates of the unknown points and in the most general application when the "best" origin, orientation and scale are sought

The symbols ($u_{i}^{0}, v_{1}^{0}, w_{1}^{0}$) denote the approximate coordinates of the ith unknown point where both the ground points and the satellite positions are considered.

It is also possible to design a set of constraints that will result in the "best" solution for only a subset of the points. In the adjustment reported here we were only interested in the gound station unknowns implying that the trace of only that portion of the covariance matrix corresponding to the ground station unknowns should be minimized, while the variances of the satellite position unknowns should not be included in the minimum sum. The constraint equations that will produce such a solution have the same form as those producing the "best" solution for all the points; however, 3×3 blocks of zeros are inserted into those positions of I which correspond to unknowns whose variances are not to be included in the minimum sum.

The inner adjustment constraint equations can be given a geometrical interpretation that appeals to intuition. Let X_{1}^{0} denote the set of approximate coordinates of the ith unknown point, dX_{1} denote the corrections to
these coordinates, and X_{1} denote the adjusted coordinates, i.e.,

$$
X_{1}=X_{1}^{0}+d X_{1}
$$

The first set of constraint equations, $C_{1}^{I} X=0$, is then equivalent to the set of conditions

$$
\sum_{1} d X_{1}=0
$$

The geometrical interpretation of these conditions is that the center of gravity of all the points will not change after adjustment, i.e.,

$$
\sum_{1} X_{i}^{0} \times d X_{1}=0
$$

If the center of the system remains fixed, then the cross products $X_{1}^{0} \times d X_{1}$ reflect rotations of the points around the fixed center. These constraint equations insure that the sums of the rotations around all three coordinate axes are zero. The corresponding geometrical interpretation is that the mean orientation of the system of points will not change after adjustment either.

Thus, the respective equations $C_{2}^{I} X=0$ and $C_{2}^{I} X=0$ effectively specify the origin and the orientation of the adjustment coordinate system. A third "inner adjustment" equation $C_{3}^{T} X=0$ specifies the scale of the system. However, this scale equation is only used when the observations themselves do not determine the scale.

A more complete description of the inner adjustment is described in [Blaha, 1971].

In summary, if the normal equations with the contribution of all the constraints (except inner constraints) are represented by

$$
\begin{equation*}
\left[\overline{\mathrm{N}}+\mathrm{N}^{\wedge}+\mathrm{N}^{C}+\mathrm{N}^{s}+\mathrm{N}^{H}\right] \mathrm{X}+\overline{\mathrm{U}}+\mathrm{U}^{R}+\mathrm{U}^{\mathrm{C}}+\mathrm{U}^{S}+\mathrm{U}^{H}=0 \tag{5}
\end{equation*}
$$

or

$$
N X+U=0
$$

then the inner adjustment can be obtained by bordering the coefficient matrix N of the normal equations as

$$
\left[\begin{array}{cc}
\mathrm{N} & \left(\mathrm{C}^{\mathrm{I}}\right)^{\prime} \tag{6}\\
\mathrm{C}^{\mathrm{I}} & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{X} \\
-\mathrm{K}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{U} \\
0
\end{array}\right]
$$

Upon the addition of any kind of constraint to the normal equations, it becomes necessary to consider also its contribution to $\Sigma V^{\prime} P V$. The degrees of freedom change as well. In order to compute the proper variance of unit weight the latter must be taken into consideration.
4. THE SOLUTION

Using the specified constraint of Section 3.2, SA-10 solution is computed. A general information of this solution is given in Table 4-1. The solution is obtained by using the general OSUGOP program (Reilly et al., 1972].

The station coordinates of SA-10 solution are given in Table 4-2 with their standard deviations.

Table 4-1
General Information on the SA-10 Geometric Adjustment

No. of observing stations	14
σ_{0} (a priori)	1.0
No. of degrees of freedom	649
$\Sigma \mathrm{~V}^{\dagger} \mathrm{PV}$	721.76
$\hat{\sigma}_{0}$ (a posteriori)	2.50
Number of constraints used:	3
Relative position constraints	1
Length (Chord) constraint	5
Station position constraints	14
Height constraints Inner constraint defines the origin of the coordinate system.	

Table 4-2
Cartesian and Geodetic Coordinates
(Solution SA 10)

Sta. No.	u	σ_{u}	v	σ_{v}	w	σ_{n}
	φ	σ_{φ}	λ	σ_{λ}	H	σ_{f}
		a_{a}	A_{a}	r_{a}		
		a_{b}	A_{b}	r_{b}		
		a_{c}	A_{c}	r_{c}		

$\mathbf{u}, \mathrm{v}, \mathrm{w} \quad$ Cartesian coordinates in meters (Orientation: $\mathrm{u}=$ the Greenwich meridian as defined by the B,I.H.; $\mathrm{v}=\lambda=90^{\circ}$ (E); $\mathrm{w}=$ Conventional International Origin).
$\varphi, \lambda \quad$ Geodetic latitude and longitude in angular units (degrees, minutes and seconds of arc) computed from the Cartesian coordinates and referred to a rotational ellipsoid of $a=6378155.00 \mathrm{~m}$ and $\mathrm{b}=6356769.70 \mathrm{~m}$.

H Geodetic (ellipsoidal) height in meters referred to the same ellipsoid.
$\sigma_{1}, \sigma_{v}, \sigma_{x} \quad$ Standard deviations of the Cartesian coordinates in meters.
$\sigma_{\varphi}, \sigma_{\lambda} \quad$ Standard deviations of the geodetic coordinates in seconds of arc.
$\sigma_{H} \quad$ Standard deviations of the geodetic height in meters.
$a_{a}, A_{a}, r_{a} \quad$ Altitude (elevation angle), azimuth and magnitude of the major semi axis of the error ellipsoid, respectively. Angles in degrees, magnitude in meters. Altitude is positive above the horizon. Azimuth is positive east reckoned from the north.
$a_{b}, A_{b}, r_{b} \quad$ Same as above for the mean axis of the error ellipsoid.
$a_{c}, A_{c}, r_{c} \quad$ Same as above for the minor axis of the error ellipsoid.

Table 4.2 (Con't)

3406	2251789.08	5.57	-5816902.96	3.94	1327210.38	7.37
	$12 \quad 526.57$	0.74	291943.15	0.20	-46.08	3.53
		8.88	-32.18	8.16		
		-5.04	57.03	4.83		
		79.77	-62.24	$3 \cdot 33$		
3407	2979880.94	7.18	-5513533.18	4.49	1181138.43	6.20
	104435.20	0.20	2982323.08	0.25	185.59	3.71
		-3.40	118.77	8.31		
		20.28	30.03	5.44		
		-69.41	19.66	3.37		
3413	5186345.51	2.00	-3654218.56	2.10	-653018.68	2.71
	- 55457.55	0.09	3244955.45	0.07	-4.76	1.97
		-3.79	3.66	2.71		
		-8.55	94.23	2.14		
		80.64	69.95	1.96		
3414	4114977.26	7.50	-4554124.02	5.71	-1732149.84.	7.17
	-155137.37	0.24	31760.26	0.27	1002.05	4.88
		2.88	50.36	9.10		
		-11.13	-39.07	5.84		
		-78.50	126.06	4.82		
3431	3093028.20	7.17	-4870063.97	6.08	-2710839.99	10.51
	-25 1858.25	0.36	3022512.20	0.26	130.54	4.94
		-5.20	11.62	11.19		
		-1.83	101.79	7.07		
		-84.48	-148.88	4.85		
3476	3623275.84	2.14	-5214208.28	1.87	601517.56	2.84
	52652.81	0.09	3044741.51	0.07	-39.47	1.81
		3.15	-6.32	2.85		
		10.83	84.28	2.20		
		-78.72	67.69	1.79		

Table 4.2 (Con't)

3477		1744	$\begin{array}{r} 32.76 \\ 0.44 \end{array}$	$\begin{aligned} & 9.75 \\ & 0.32 \end{aligned}$	$\begin{array}{r} -6114278.13 \\ 2855531.56 \end{array}$	$\begin{aligned} & 6.57 \\ & 0.34 \end{aligned}$	532213.19	$\begin{aligned} & 9.76 \\ & 5.37 \end{aligned}$		
			-	-2.76	47.57	13.26				
				-43.15	140.16	5.79				
				46.72	134.84	4.90				
3478		$\begin{array}{r} 3185743.08 \\ 3 \quad 843.73 \end{array}$		$\begin{array}{r} 11.19 \\ 0.67 \end{array}$	-5514590.21$300 \quad 0 \quad 53.09$	$\begin{aligned} & 9.39 \\ & 0.43 \end{aligned}$	$\begin{array}{r} -347640.88 \\ 36.97 \end{array}$	$\begin{array}{r} 20.43 \\ 5.75 \end{array}$		
	-3									
					-30.23	23.24				
			-	-0.19 -21.96	59.85	7.91				
				68.04	59.31	5.31				
3499	1280825.47-0552.25			$\begin{aligned} & 2.99 \\ & 0.13 \end{aligned}$	-6250950.21.	2.60	-10793.24	4.01		
				2813446.84	0.10	2676.43	2.61			
	2.5110.43				14.32	4.07				
					104.78	2.90				
	10.43-79.26				90.96	2.60				
6002	1130763.54$39 \quad 1 \quad 39.39$				2.10	-4830831.02	1.63	3994704.49	1.86	
				0.06	2831027.00	0.09	-7.30	1.54		
	+ $\begin{array}{r}1.79 \\ 11.74\end{array}$				105.75	2.11				
					. 15.36	1.93				
	-78.12				24.27	1.52				
	-				-					
6008	3623239.5952653.49			$\begin{aligned} & 2.07 \\ & 0.09 \end{aligned}$	$\begin{array}{r} -5214231.39 \\ 3044740.11 \end{array}$	$\begin{aligned} & 1.79 \\ & 0.07 \end{aligned}$	601538.31-39.20	$\begin{aligned} & 2.79 \\ & 1.74 \end{aligned}$		
	3.25				-5.65	2.80				
	11.07				84.98	2.12				
	-78.46				68.21	1.71				
6009	$\begin{array}{r} 1280825.47 \\ -0 \quad 551.25 \end{array}$			$\begin{aligned} & 2.99 \\ & 0.13 \end{aligned}$	-6250950.22	$\begin{aligned} & 2.59 \\ & 0.10 \end{aligned}$	$\begin{array}{r} -10793.24 \\ 2676.43 \end{array}$	$\begin{aligned} & 4.01 \\ & 2.61 \end{aligned}$		
				2813446.84						
	2.51				14.32	4.07				
	10.48				104.78	2.90				
	-79.22				91.01	2.59				
6019	$\begin{array}{r} 2280626.58 \\ -315634.95 \end{array}$				2.43	-4914540.71	2.64	-3355401.90	3.65	
				0.11	2945338.34	0.10	603.72	2.77		
	$\begin{aligned} & -24.10 \\ & -46.19 \end{aligned}$				-0.19	3.67				
					117.61	2.63				
	33.99				72.26	2.41				

Table 4.2 (Con't)

6067	5186394.24	1.92	-3653929.59	2.03	-654276.72	2.64
-55538.71	0.09	32450	4.04	0.07	-0.90	1.90
	-3.90	3.53	2.65			
	-11.21	94.31	2.06			
	78.11	74.64	1.89			

In the tables the rotations $\omega_{j} \psi$, and ϵ are about the w, v, and u axes, respectively. The scale factor Δ is in units of ppm . The unit in the variance-covariance matrix, for the elements corresponding to the rotations, is radian squared.

5. COMPARISON WITH OTHER SOLUTIONS

Table 5.1-1 summarizes the transformation parameters between SA 10 and South American 1969 Datum, and Table 5.1-2 between SA 10 and WN14 Solution [Mueller et al., 1973].

Table 5. 1-1

SA10 -TO- SAD-6.9

SCALE FACTOR ANO ROTATIUN PAQAMETERS CONSTRAINEO

SOLUTICN FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAM:ETFRS

(USING VARIANCFS ONLY)

DU	DV	DW	DELTA	OMEGA	PSI	FPSILON
METERS	METERS	METERS	$(X 1.0+6)$	SECCNOS	SECONOS	SECONOS
59.65	16.52	36.33	5.80	-0.79	0.12	0.21

VARIANCE - COVARIANCE MATRIX

| $\sigma_{0}^{2}=$ | 1.13 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0.8570+02$ | $0.5840+01$ | $0.1060+02$ | $-0.4470-05$ | $0.9670-05$ | $-0.2770-05$ | $-0.1260-05$ |
| $0.5840+01$ | $0.7490+02$ | $0.1860+01$ | $0.738 D-05$ | $0.5640-05$ | $-0.3580-06$ | $0.13001-05$ |
| $0.1060+02$ | $0.1860+01$ | $0.9230+02$ | $0.1370-05$ | $0.1610-05$ | $-0.6440-05$ | $-0.9750-05$ |
| $-0.4470-05$ | $0.7380-05$ | $0.1370-05$ | $0.1450-11$ | $0.7210-14$ | $0.3190-14$ | $0.1100-13$ |
| $0.9670-05$ | $0.5640-05$ | $0.1610-05$ | $0.7210-14$ | $0.1870-11$ | $-0.2650-12$ | $-0.1520-12$ |
| $-0.2770-05$ | $-0.358 D-06$ | $-0.6440-05$ | $0.3190-14$ | $-0.2680-12$ | $0.1360-11$ | $0.4400-12$ |
| $-0.1260-05$ | $0.1300-05$ | $-0.9790-05$ | $0.1100-13$ | $-0.1520-12$ | $0.4400-12$ | $0.1680-11$ |

COEFFICIENTS OF CORRELATION

| $0.1000+01$ | $0.7300-01$ | $0.1190+00$ | $-0.4010+00$ | $0.764 D+00$ | $-0.2570+00$ | $-0.1050+00$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $0.7300-01$ | $0.1000+01$ | $0.2240-01$ | $0.7080+00$ | $0.4760+00$ | $-0.3550-01$ | $0.1160+00$ |
| $0.1190+00$ | $0.2240-01$ | $0.1000+01$ | $0.1180+00$ | $0.1220+00$ | $-0.5760+00$ | $-0.7880+00$ |
| $-0.4010+00$ | $0.7080+00$ | $0.1180+00$ | $0.1000+01$ | $0.4380-02$ | $0.2270-02$ | $0.7050-02$ |
| $0.7640+00$ | $0.4760+00$ | $0.1220+00$ | $0.4380-02$ | $0.1000+01$ | $-0.1690+00$ | $-0.8560-01$ |
| $-0.2570+00$ | $-0.3550-01$ | $-0.5760+00$ | $0.2270-02$ | $-0.1680+00$ | $0.1000+01$ | $0.2920+00$ |
| $-0.1050+00$ | $0.1160+00$ | $-0.788 D+00$ | $0.7050-02$ | $-0.8560-01$ | $0.2920+00$ | $0.1000+01$ |

Table 5.1-1 (Con't)

RESIDUALS V

	V1 1	SAIO)		V21 SAD-69)			$V 1-\mathrm{V}$?		
3414	0.4	-2.8	1.3	3414	-0.7	8.5	-2.6	1.2	-11.3	3.9
3431	3.0	-0.1	7.8	3431	-5.0	0.3	-7.1	9.0	-0.4	14.9
3477	17.7	0.9	8.3	3477	-18.7	-2.1	-8.7	36.4	3.1	16.9
6008	-0.2	0.3	1.0	6008	3.8	-8.2	-12.5	-4.0	8.4	13.5
6009	-0.9	-0.3	-2.6	6009	10.0	4.9	16.4	-10.9	-5.2	-19.0
6019	-0.4	0.5	-0.9	6019	7.4	-7.3	7.1	-7.8	7.8	-6.1
6067	-0.2	-0.?	-0.5	6067	4.1	3.9	7.3	-4.3	-4.0	-7.8

Table 5.1-2

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS
(USING VARIANCES ONLY)

DU	DV	ON	DELTA	OMEGA	PSI	EPSILON
METERS	METERS	METERS	$(X 1.0+6)$	SECONDS	SECONOS	SECONDS
1.63	-7.78	-4.92	-0.44	-0.13	0.07	0.10

VARIANCE - COVARIANCE MATRIX

$\sigma_{0}^{2}=0.92$						
$0.3650+01$	$0.5210+00$	$0.8800+00$	$-0.1710-06$	$0.4030-06$	$-0.339 D-07$	$-0.1340-06$
$0.5210+00$	$0.3150+01$	$0.4620+00$	$0.2440-06$	$0.2860-06$	$-0.3040-07$	$-0.1200-06$
$0.8800+00$	$0.4620+00$	$0.3630+01$	$-0.4440-07$	$0.1620-06$	$-0.1680-06$	$-0.2770-06$
$-0.1710-06$	$0.2440-06$	$-0.4440-07$	$0.5050-13$	$-0.1550-15$	$0.3900-15$	$0.3510-15$
$0.4030-06$	$0.2860-06$	$0.1620-06$	$-0.1550-15$	$0.8560-13$	$-0.8840-14$	$-0.2840-13$
$-0.3390-07$	$-0.3040-07$	$-0.1680-06$	$0.3900-15$	$-0.884 D-14$	$0.4310-13$	$0.7400-14$
$-0.134 D-06$	$-0.1200-06$	$-0.2770-06$	$0.3510-15$	$-0.2840-13$	$0.7400-14$	$0.5350-13$

COEFFICIENTS OF CORRFLATION

| $0.1000+01$ | $0.1540+00$ | $0.2420+00$ | $-0.3980+00$ | $0.7200+00$ | $-0.8550-01$ | $-0.3020+00$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $0.1540+00$ | $0.1000+01$ | $0.137 D+00$ | $0.6120+00$ | $0.5510+00$ | $-0.8250-01$ | $-0.2970+00$ |
| $0.2420+00$ | $0.1370+00$ | $0.1000+01$ | $-0.1040+00$ | $0.2910+00$ | $-0.4240+00$ | $-0.6290+00$ |
| $-0.3980+00$ | $0.6120+00$ | $-0.1040+00$ | $0.1000+01$ | $-0.2360-02$ | $0.8350-02$ | $0.6750-02$ |
| $0.7200+00$ | $0.5510+00$ | $0.2910+00$ | $-0.2360-02$ | $0.1000+01$ | $-0.1450+00$ | $-0.4200+00$ |
| $-0.8550-01$ | $-0.8250-01$ | $-0.4240+00$ | $0.8350-02$ | $-0.1450+00$ | $0.1000+01$ | $0.1540+00$ |
| $-0.3020+00$ | $-0.2920+00$ | $-0.6290+00$ | $0.6750-02$ | $-0.4200+00$ | $0.1540+00$ | $0.1000+01$ |

Table 5.1-2 (Con't)

RESIDUALS V

	V11	SA10)		V21	WN14 J		$V_{1}-V_{2}$		
3406	6.6	-5.3	-14.5	3406	-1.2	1.5	3.0	7.8	-6.7	-17.6
3407	4.9	3.5	-4.3	3407	-2.1	-1.9	3.1	7.0	5.4	-7.4
3413	0.1	-0.2	1.0	3413	-0.1	0.3	-0.9	0.2	-0.5	1.9
3414	-1.4	-6.6	-1.2	3414	1.5	7.6	1.2	-2.9	-14.2	-2.4
3431	6.3	-5.8	9.1	3431	-7.1	6.7	-9.7	13.3	-12.5	18.8
3476	-0.8	0.3	-0.3	3476	0.8	-0.4	0.3	-1.7	0.7	-0.6
3477	6.6	-2.3	-1.5	3477	-7.2	2.4	1.4	13.8	-4.7	-2.4
3478	8.0	2.4	-15.4	3478	-22.4	-5.8	45.4	30.4	8.?	-60.7
3499	2.0	-0.5	-2.8	3499	-2.9	0.9	2.9	4.9	-1.4	-5.7
6002	-0.5	0.7	1.1	6002	0.5	-0.8	-1.1	-1.0	1.5	2.2
6008	-0.8	0.4	-0.3	6008	0.9	-0.5	0.3	-1.7	0.8	-0.6
6019	-1.8	1.6	0.5	6019	1.7	-1.7	-0.5	-3.5	3.4	1.1
6067	0.1	-0.2	0.9	6067	-0.1	0.2	-0.9	0.1	-0.3	1.9

6. REFERENCES

Blaha, Georges. (1971). "Inner Adjustment Constraints with Emphasis on Range Observations." Reports of the Department of Geodetic Science, No. 148. The Ohio State University, Columbus.

CSC. (1971). NASA Directory of Observation Station Locations, Vol. 1 and 2, second edition. Prepared by Computer Sciences Corporation, Falls Church, Virginia, for Metric Data Branch, Network Computing and Analysis Division, Goddard Space Flight Center, Greenbelt, Maryland.

CSC. (1972/73). Correction Sheets to NASA Directory of Observation Station Locations, Vol. 1 and 2. Prepared by Computer Sciences Corporation, Falls Church, Virginia.

Huber, Donovan N. (1971). Densification of the World Satellite Triangulation Network in South America with the PC-1000 Camera (Geometric Triangulation). ACIC Technical Report No. 72-3, U. S. Air Force, Aeronautical chart and Information Center, St. Louis, Missouri, December.

Mueller, Ivan I. (1968). "Global Satellite Triangulation and Trilateration," Bulletin Geodesique, 87.

Mueller, Ivan I., M. Kumar, J. P. Reilly, N. Saxena, T. Soler. (1973). "Global Satellite Triangulation and Trilateration for the National Geodetic Satellite Program." Reports of the Department of Geodetic Science, No. 199, The Ohio State University, Columbus.

Rapp, R. H. (1973). "Comparison of Least Squares and Collocation Estimated Potential Coefficients." Reports of the Department of Geodetic Science, No. 200, The Ohio State University, Columbus.

Reilly, J. P., C.R. Schwarz, M.C. Whiting. (1972) "The Ohio State Unitversity Geometric and Orbital (Adjustment) Program (OSUGOP) for Satellite Observations." Reports of the Department of Geodetic Science, No. 190, The Ohio State University, Columbus.

Rinner, K. et al. (1967). "Beiträge zur Theorie der Geodätischen Netze im Raum." Deutsche Geodätische Kommission, Reihe A, Heft 61, Munich.

