111 research outputs found

    Chern-Simons anomaly as polarization effect

    Get PDF
    The parity violating Chern-Simons term in the epoch before the electroweak phase transition can be interpreted as a polarization effect associated to massless right-handed electrons (positrons) in the presence of a large-scale seed hypermagnetic field. We reconfirm the viability of a unified seed field scenario relating the cosmological baryon asymmetry and the origin of the protogalactic large-scale magnetic fields observed in astronomy.Comment: 4 pages, latex, matches published versio

    Protogalactic Extension of the Parker Bound

    Get PDF
    We extend the Parker bound on the galactic flux F\cal F of magnetic monopoles. By requiring that a small initial seed field must survive the collapse of the protogalaxy, before any regenerative dynamo effects become significant, we develop a stronger bound. The survival and continued growth of an initial galactic seed field ≀10−9\leq 10^{-9}G demand that F≀5×10−21(m/1017GeV)cm−2sec−1sr−1{\cal F} \leq 5 \times 10^{-21} (m/10^{17} {GeV}) {cm}^{-2} {sec}^{-1} {sr}^{-1}. For a given monopole mass, this bound is four and a half orders of magnitude more stringent than the previous `extended Parker bound', but is more speculative as it depends on assumptions about the behavior of magnetic fields during protogalactic collapse. For monopoles which do not overclose the Universe (Ωm<1\Omega_m <1), the maximum flux allowed is now 8×10−198 \times 10^{-19} cm^{-2} s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the extended Parker bound.Comment: 9 pages, 1 eps figur

    Shock Waves in the Large-Scale Structure of the Universe

    Full text link
    Cosmological shock waves are induced during hierarchical formation of large-scale structure in the universe. Like most astrophysical shocks, they are collisionless, since they form in the tenuous intergalactic medium through electromagnetic viscosities. The gravitational energy released during structure formation is transferred by these shocks to the intergalactic gas as heat, cosmic-rays, turbulence, and magnetic fields. Here we briefly describe the properties and consequences of the shock waves in the context of the large-scale structure of the universe.Comment: Submitted to Astrophysics and Space Science (Special Issue for the proceedings of International Conference on HEDP/HEDLA-08). Pdf with full resolution Figure 1 can be downloaded from http://canopus.cnu.ac.kr/ryu/rk.pd

    Effects of non-linearities on magnetic field generation

    Get PDF
    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a "natural" mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10−3010^{-30} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.Comment: 21 pages; v2: minor changes, added references; v3: version accepted for publication in JCA

    A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations

    Full text link
    A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, alpha-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infinite divisibility problems in probability theory and certain fractional integrals and fractional derivatives. A number of applications are pointed out with special reference to solutions of fractional reaction and reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo

    Hyperbolic heat equation in Kaluza's magnetohydrodynamics

    Full text link
    This paper shows that a hyperbolic equation for heat conduction can be obtained directly using the tenets of linear irreversible thermodynamics in the context of the five dimensional space-time metric originally proposed by T. Kaluza back in 1922. The associated speed of propagation is slightly lower than the speed of light by a factor inversely proportional to the specific charge of the fluid element. Moreover, consistency with the second law of thermodynamics is achieved. Possible implications in the context of physics of clusters of galaxies of this result are briefly discussed.Comment: 14 pages, no figure

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
    • 

    corecore