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We study the two-dimensional global scale magnetic field structure for a 

system of two merging cylindrical plasmas in a steady state. In the limit of 

very large magnetic Reynolds numbers the reconnection process is slow, and 

the plasma almost everywhere finds itself in magnetostatic equilibrium. We 

show that under certain conditions the classical Syrovatskii-type Y-point con- 

figuration, with surface current concentrated only in the reconnection layer, is 

not possible. Instead, a cusp configuration is formed, with finite surface cur- 

rent in the separatrix. The equilibrium condition, together with constraints 

on the volume per flux, enables us  to determine the shape of the separatrix 

and the magnetic field in the vicinity of the cusp point. Our solution is char- 

acterized by a singular power law dependence of current density on the flux 

coordinate XP near the separatrix: j ( q )  N lXPl-1/2. This solution gives us the 

boundary conditions that are needed to find the flow in the reconnection and 

the separatrix regions. 
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I. INTRODUCTION 

It is generally accepted that magnetic reconnection is important in laboratory and space 

plasmas. In order to understand the mechanism of magnetic reconnection in the limit of 

large magnetic Reynolds numbers, it is necessary to understand the dynamic behavior of 

the plasma in thin layers. A closer examination of these layers reveals that the reconnection 

layer often ends in a cusp-like structure. It is the purpose of this paper to investigate when 

such a cusp structure appears and to determine the magnetic and the velocity fields in the 

cusp region. We restrict ourselves to the two dimensional (2D) quasi steady state resistive 

magnetohydrodynamics (MHD). 

While most of our conclusions are rather general, we keep in mind the geometry of 

two merging cylindrical plasmas relevant to the Magnetic Reconnection experiment (MRX) 

[l]. The general configuration in the middle of the reconnection process is presented very 

schematically in Fig. 1. Regions I and I1 are ideal-MHD regions: regions I, which we call 

the upstream regions, represent unreconnected flux and region I1 (the downstream region) 

represents reconnected or common flux. The two regions I are separated by the very narrow 

reconnection layer, lying on the midplane y = 0. The poloidal magnetic field reverses 

across this layer, resulting in very high current density. Because of this, one must take into 

account resistive effects to describe plasma in this region. Regions I and I1 are separated 

by the separatrix region. In general, the poloidal magnetic field can have a discontinuity 

across the separatrix, so that the separatrix region also requires resistive description. Overall 

symmetry with respect both to the midplane and to the vertical y-axis is assumed. 

In many astrophysical situations, the magnetic Reynolds number (or, rather, Lundquist 

number) R, is very high [a]. In laboratory experiments this number, though still much 

greater than one, is much lower than in space (for example, R, N lo3 in the MRX experiment 

[l]). Therefore, in order to connect the physics of the experiments to that of the space 

plasmas, we discuss the problem in the limit of very large R,. 

In this limit, the reconnection velocity and the thickness of the resistive current layer are 

small compared with the Alfvkn speed and the length of the layer, respectively. Thus, we 
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have two different scales for both distances and velocities in our problem: 

- the global (or macroscopic) scale is represented by the half-length L of the layer and by 

the Alfvkn speed VA. These are determined by the global solution in regions I and 11, where 

ideal MHD is valid, and are, therefore, independent of the details of the narrow reconnection 

layer. In particular, they remain finite in the limit R, + m. 

- the local (or microscopic) scale is represented by the thickness S of the layer and by 

the reconnection velocity V,,,. These are determined by the solution of the local resistive 

MHD problem considering the reconnection layer with the boundary conditions given by 

the global ideal MHD solution. These quantities vanish in the limit R, + 00, so we shall 

sometimes call them infinitesimal. 

These two different scales allow us to break up the whole problem into two separate 

ones [3]: the global problem involving the two ideal regions I and 11, and the local problem 

concerning the very thin resistive reconnection region and the separatrix region. 

If the boundary conditions for the global problem change slowly compared with Alfvkn 

time, the global ideal MHD problem becomes that of the magnetostatic equilibrium, and the 

whole reconnection process can be described by a one-parameter sequence of magnetostatic 

equilibria [3]. The plasma velocity is much slower than the Alfv6n speed almost everywhere, 

with the exception of the infinitesimally thin reconnection layer, and the separatrix region'. 

At any given moment, once the global magnetostatic equilibrium is found, one can set 

up the appropriate boundary conditions for the local problem. These boundary conditions 

lIndeed, Vpetp is small because of the Ohm's law: VperpB = E << BoVA. As for the parallel 

component of velocity, it is small because of the following argument. The maximum distance the 

plasma has to move along a line of force is L. The time it takes for the field line to move a distance 

AS >> S away from the separatrix in the perpendicular direction is At N AS/Vr,, N (Az/S) (LIVA). 

The parallel velocity during this time can be estimated as ~111 IV L/At 2 VAS/AS. Thus, for AS >> 6 

the parallel velocity is small compared to VA. 
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are obtained from the global solution in the vicinity of the reconnection layer and of the 

separatrix. The term “in the vicinity of the reconnection layer” here means at distances from 

the layer much larger than its thickness S, but still much shorter than the global size of the 

system, for example, the length 2L of the layer. Since the velocity on the global scale is zero, 

the only boundary condition we need to specify for the local problem is the magnetic field as 

a function of the distance along the reconnection layer and along the separatrix as seen on 

this global scale (and therefore the current density integrated across these surfaces). Note 

that both the reconnection layer and the separatrix are infinitesimally thin flux surfaces on 

the global scale. Therefore, what we are really interested in is the magnetic field structure 

around the system of current sheets consisting of a singular reconnection current layer of 

length 2L lying on the midplane, and the separatrix branching off somewhere near the 

endpoints of the reconnection layer. The global solution should also give us the shape of the 

separatrix. Despite the fact that the global magnetostatic equilibrium is different in different 

situations, we can draw some general conclusions about the magnetic field structure near 

an endpoint of the reconnection layer. This region is very important for understanding the 

transition between the flow inside the reconnection region and the flow in the separatrix. 

The analysis of the neighborhood of an endpoint is the main goal of this paper. 

To determine the asymptotic behavior near the endpoint, one has to know the global 

distribution of currents in the system, including both the surface current density in the 

reconnection layer and the other global currents. The role of these other global currents is 

different in the following two cases: 

Case 1. There are no additional current sheets attached to the reconnection layer. All the 

currents are either located at some global distance from the endpoints (like external coils), 

or distributed over large 2D regions (like the current in the plasma cylinders themselves). 

These currents do not change the nature of the solution near the endpoints, and thus we are 

lead to the Syrovatskii-like solution. 

Case 2. More realistic situation with current sheets along each separatrix. In this case 

the behavior near the endpoints is changed dramatically, leading to the cusp solution, first 
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suggested by Low and Wolfson [4], and then studied in more detail by Vekstein and Priest 

[5-8] in the context of the evolution of coronal arcades in response to a slow photospheric 

footpoint motions. 

Current in the separatrix is generally caused by a slow (compared with the Alfvkn time) 

discontinuous change in the the global magnetostatic equilibrium, which can be attributed 

to various reasons. In the situation considered by Low, Wolfson, Vekstein, and Priest, such 

change of equilibrium occurs even before reconnection starts, and is caused by the change in 

the global boundary conditions, namely, by the sheared motion of the footpoints on the sun 

surface [4-81. In this paper we consider a different case, when the global boundary conditions 

are held static, and the current in the separatrix appears due to the natural gradual change 

in the global equilibrium caused by the reconnection process itself. 

In Section I1 we describe briefly the Syrovatskii solution and show how it is affected 

by other global currents. We also show in this section how in the incompressible case one 

can determine the velocity field in the downstream region in the vicinity of an endpoint. 

In Section I11 we describe the cusp solution. These two sections are logically independent 

from each other. In section 111-A we explain how the reconnective evolution of two merging 

plasmas leads to the current in the separatrix, and why this current leads to a cusp-like 

magnetic configuration near the endpoint. In section 111-B we formally set up the problem 

for the magnetic field near the separatrix. In section 111-C we repeat the elegant calculation 

due to Vekstein and Priest [6,7] concerning the downstream region in the vicinity of the 

cusp point. In section 111-D we consider carefully the volume per flux in order to obtain 

the constraints necessary to uniquely determine the solution in the downstream region. In 

section 111-E we consider the upstream region and show that the solution suggested by 

Vekstein and Priest for this region in Ref. [7] is not suitable for our geometry of two merging 

plasmas, and we find another solution which matches properly with the downstream solution. 

In section 111-F we return to the downstream region and give analytical expressions for the 

magnetic field and for the plasma velocity near the endpoint. In section 111-G we briefly 

discuss the incompressible case. Finally, in section 111-H we discuss the relation between our 
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work and that of Vekstein and Priest. We present our conclusions in section IV. 

11. THE SYROVATSKII SOLUTION. 

On the global scale, the reconnection current layer looks like a singular current sheet 

of zero thickness and of width 2L. The current sheet is described in terms of the surface 

current density ~ ( x ) ,  1x1 5 L,  as a function of the distance x along the midplane y = 0. 

Syrovatskii [9] gave a one-parameter family of solutions for the magnetic field surrounding 

a single current sheet in two dimensions. In terms of the surface current density ~ ( x ) ,  these 

solutions can be written as 

Unless a = L,  the current density develops a singularity at the endpoints 2 = f L .  

Such solutions do not seem to be physically possible [lo], and we shall not discuss them 

here. Instead, we concentrate on the special Syrovatskii solution with a = L,  obtained by 

requiring the current density to vanish at both endpoints: 

o ( x )  = IT0 1 -- J E: 
This solution (as well as the general solutions (1)) is obtained as a solution of Laplace’s 

equation on the plane with a single branch cut representing the current sheet. It is assumed 

that the normal to the midplane component of the magnetic field produced by the other 

global currents in the system (such as external coils or plasma currents) is a linear function 

along the entire current sheet: By ,ez t (~ )  N x,IxI _< L. This assumption can be justified only 

if the current sheet’s length 2L is much shorter than the size of the whole system, i.e. than 

the distances to these other global currents (which in this section we shall call the external 

currents). In a more general situation, when L is of the same order as these distances to 

the external currents, the normal magnetic field due to these external sources can be an 

arbitrary function of 2, so that the function o(z) is different from (2). We here show how 

to obtain the solution for this general case. 
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Suppose that from the global MHD equilibrium we know the global distribution j(3 
of the external currents in the 2D region R surrounding the current sheet. Then we can 

calculate the normal component of the magnetic field due to this current distribution at any 

point on the midplane: 

The normal component of the magnetic field due to the current sheet itself is 

dx' 
x - x' (4) 

Since the magnetic field immediately above and below the current sheet must be tan- 

gential to the midplane, we can write 

which gives us the following linear integral equation for a(x) in terms of the known function 

By,ezt (x,O): 

This is a singular integral equation of the first kind with a Cauchy kernel. The exact 

solution of this equation corresponding to a(fL)  = 0 is available [ll] for any function g(x) 

satisfying the orthogonality condition J &dx = 0. The symmetry with respect to the 

vertical y-axis assures that g(x) is an odd function, so this condition is satisfied. We get 

1 

-1 

In this section we consider the case when the external global currents are remote sources, 

so that the function g(x) is a finite regular function. The case when this is not so will be 

considered in Section 111. 

The integral in (7) is then a slow function of x which is finite everywhere in the layer 

including the endpoints x = f L .  Therefore, the current density in the current sheet can in 

general be described as 
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where f ( x )  is a smoothly varying function, the particular form of which depends on the 

particular problem, i.e. on the global distribution of plasma currents and on the location of 

external coils, etc. 

This expression reveals an important universal feature of the current sheet, namely, the 

square-root behavior of a ( x )  near the endpoints x = f L .  

Formula (7) can be illustrated by the following example of a possible current distribution 

in region a. Suppose that all the current is concentrated in two singular wires, located 

symmetrically above and below the midplane. Let a be the distance from each of the wires 

to the current sheet, and let each of the wires carry current Io. Then, one can easily see 

that s&) = - 2 I o w ,  and formula (7) gives: 

which is in agreement with the result obtained by Green [12]. 

Now we can investigate the magnetic field structure in the vicinity of the endpoint. It 

is more convenient to work here in polar coordinates with the origin at the endpoint, and 

with angle 4 measured from the midplane (see Fig. 2). 

This endpoint is a Y-point, so the magnetic field must go to zero at the origin. This 

means that in the vicinity of this point, r << L,  the zero-order magnetic field produced 

by the current sheet is canceled by the zero-order magnetic field produced by all the other 

currents in the system. The next order correction to the magnetic field due to these other 

currents should be linear in r ,  while the next order correction to the magnetic field due to 

the current sheet is of the order fi, and thus, this contribution dominates in this region. 

Then, to the leading order in r / L ,  the magnetic field can be written as 

B,. = B o r n s i n  - 34 
2 

B d  = BO@ cos - 34 
2 

The separatrix makes a 60" angle with the midplane (see Fig. 2). 
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Now let us consider the slow velocity field in the downstream region in the vicinity of 

the endpoint. While the discussion of the magnetic field structure was independent of the 

plasma dynamics, in order to find the velocities we need to make some assumptions. For 

example, we assume that the fluid is incompressible. Also we use the fact that ideal MHD is 

valid in this region (which is outside the resistive current layer). Then we get the following 

two equations for the two unknown components of velocity: 

v.v'=o 
+ + 

v' x B = -cE = const, 

with the boundary condition v4(4 = 0) = 0. 

The solution of this system is: 

where 

I(<) = J' c 54f3dC-p 
The asymptotic behavior of I ( [ )  as [ goes to zero (Le. q5 + 60") is I (<)  N 3[-lI3 - 2.2405. 

The bulk of the plasma flowing out of the reconnection region is diverted from the 

midplane and flows along the separatrix (here E, < 0, and so 21,. > 0). One can easily see 

that, as we approach the separatrix line, v,. goes to infinity. This singular behavior near the 

separatrix (where ideal MHD is expected to break down) must be asymptotically matched 

with the very fast (of order VA) flow in the separatrix, which requires a local scale analysis 

taking into account dissipative effects. 

The solution for the velocity in the upstream region can not be found as easily as in 

the downstream region, because, even though the equations are the same, the boundary 

conditions for the flow in the upstream region can only be set up on the vertical axis II: = 0, far 
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from the endpoint. Then the solution will depend on the magnetic field structure everywhere 

along the current layer. 

111. THE CUSP SOLUTION. 

In this section we consider the magnetic configuration with finite surface current in the 

separatrix, which leads to the cusp solution. We concentrate our discussion on the closed 

field line geometry corresponding to two merging cylindrical plasmas. Our approach is in 

a way an extension of Vekstein and Priest’s treatment [6,7] of the solar corona problem in 

which the field lines are open. However, careful consideration of volume per flux in our 

analysis allows us to uniquely determine the magnetic field structure in the vicinity of the 

endpoint, and also to calculate the velocity field in the downstream region. 

1II.A The Need for a Cusp-like Configuration. 

In the Syrovatskii-like solutions it is assumed that there are no current sheets attached 

to the reconnection layer, in particular, that there is no current in the separatrix. Such 

solutions do not involve the actual plasma dynamics, and are, therefore, of limited physical 

interest. More relevant is the situation when the separatrix itself is a current sheet with 

integrated current density of the same order as that in the reconnection layer. Then the 

function g(z) introduced in the previous section is not regular near the endpoint, so that 

the square-root behavior of the current density in the reconnection layer breaks down. As 

a result, the magnetic field structure in the vicinity of the endpoint changes dramatically, 

with the Y-point becoming the cusp-point. 

Current in the separatrix can emerge even before the reconnection process starts, if there 

is a discontinuous change of the global boundary conditions. This situation for a force- 

free compressible plasma was studied by Low and Wolfson [4] and by Vekstein, Priest and 

Amari [5] in the case of open-field-line geometry, where this change of the global boundary 

conditions is represented by sheared displacement of the foot-points on the sun surface. We 
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consider a rather different physical situation, which nevertheless is characterized by very 

similar behavior. In our case of two merging plasmas, the magnetic field lines are closed, 

and the current in the separatrix arises very naturally due to the reconnective evolution of 

the system, even with static global boundary conditions. 

First, we use the following very crude argument to show how the transfer of plasma from 

the unreconnected region I into the reconnected region I1 gives rise to the finite current 

in the separatrix. Consider a thin flux layer AQ before and after reconnection. In the 

case of compressible plasma (the incompressible case will be discussed in section 111-G), we 

can use energy conservation. Assuming that there are no energy losses (radiation, etc.), 

the amount of magnetic energy destroyed in the reconnection process is finally converted 

into thermal energy, plus the work done by the flux layer under consideration during its 

expansion. Therefore, the pressure on the field line after reconnection PII is increased by 

a finite amount P1r - PI over the pressure PI on the field line before reconnection. The 

pressure balance across the separatrix then requires that the magnetic field strength have a 

finite jump, meaning finite current in the separatrix. 

To see, what this finite current means for the global magnetic structure in the vicinity 

of the endpoint, we use the following argument, which is very similar to the arguments in 

Ref. [4,5] for the case of solar corona. 

Consider two field lines, one before reconnection, the other after reconnection, but both 

very close (on the global scale) to the separatrix. Both magnetic surfaces are in equilibrium, 

so that the pressure is constant along each of them. The difference PIT - PI is finite, which 

corresponds to finite surface current in the separatrix. There is also a pressure balance 

across the separatrix (we can neglect global curvature of the magnetic field lines, because 

the two surfaces are very close to the separatrix): 

where 1 is the distance from the endpoint measured along the separatrix, I represents the 

magnetic field line before reconnection, and I1 after reconnection. Applying Eq. (17) at some 
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cross-section very close to the endpoint, at r << L (but still r >> A$, where Ax is the distance 

between the two magnetic field lines at this cross-section, so that Eq. (17) is still valid),we 

see that, even as BII + 0 as r 4 0, Br(r) must remain finite. At the endpoint r = 0, 

Bl(r )  reaches its minimum value B I , ~ ; ~  = S T ( P I ~  - PI), which is finite and is determined 

by the whole global solution. This is in contradiction with the classical Syrovatskii solution 

Bl(r) = Bll(r) - r1i2 -+ 0. Moreover, in any solution with the separatrix making a finite 

angle with the midplane, both Bl(r) and B l ~ ( r )  go to zero as r -+ 0. Thus, we have to 

conclude that the only plausible configuration of magnetic field near the endpoint is cusp- 

like, with the separatrix tangent to the midplane at the endpoint of the reconnection layer 

(see Fig. 3). A possible hint of the cusp can be seen in numerical simulations by Biskamp 

~ 3 1 .  

Note that the relative amount of the magnetic energy destroyed in the reconnection 

layer is roughly proportional to L / ( L  + L1), where L is the half-length of the reconnection 

layer, and L1 is the length of the separatrix, from the endpoint of the reconnection layer to 

the top point A (see Fig. 1). In general, L and L1 are expected to be of the same order 

of magnitude, so that the relative jump of magnetic field strength across the separatrix is 

finite. However, if L << L1, we recover a separatrix without current, leading to the transition 

to the Syrovatskii solution: PII - PI << @"/T + Bl(0) << BI(I - L1) .  The cusp region 

becomes very small, and the separatrix turns rather sharply. 

1II.B Formulation of the Problem 

Now let us investigate the magnetic field structure near the cusp point. This is more 

difficult than in the Syrovatskii solution. For one thing, the exact shape of the separatrix is 

not known and must be determined self-consistently. Also, as we shall see, the contribution 

from the global distributed currents can not be neglected. 

We choose to work in polar coordinates with the origin at the cusp point and with the 

midplane lying along the x-axis. We assume symmetry with respect to the midplane. On 

the separatrix 9 = 0, and we choose the convention that !D > 0 in the upstream region I, 
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and 9 < 0 in the downstream region I1 (see Fig. 3). 

The magnetic field is determined from the solution of the Poisson equation 

477. V 2 Q ( r , 4 )  = --J(Q) 
C 

separately in regions I and 11. (Since plasma is in magnetostatic equilibrium, the current 

density is constant along the field lines: j = j (Q).)  The boundary conditions are given on 

the midplane and on the separatrix of some yet unknown shape qb = qbs(r). For region I the 

boundary conditions are: 

and for region I1 they are: 

and 

and 

The shape of the separatrix &(r)  is fixed by imposing the condition of pressure balance 

across the separatrix: 

where Bs~(Z) and B,II(Z) are the magnetic fields on the two sides of the separatrix as functions 

of the length measured along the separatrix. 

While the complete solution of this problem requires the knowledge of the entire global 

magnetostatic equilibrium, it turns out that one can make some universal conclusions about 

the asymptotic behavior near the endpoint which are valid for a variety of global equilibria. 

In the next two sections we consider only the downstream region 11. As we show in the 

Appendix, the downstream current density as a function of flux must be singular near the 

separatrix Q = 0. As will be justified a posteriori, we may assume that this is a power law 

singularity : 
c 

j ( Q )  = --D (-Q)-n, D > 0, n > 0 

(we include the "-" sign here because in the reconnection layer and in the separatrix the 

current density is negative, and we want to be able to match the global divergent j ( Q )  to 
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the local current density in the separatrix continuously). Since the magnetic field does not 

diverge at the separatrix, the inequality 0 < n < 1 must be satisfied. 

Thus, we obtain the following nonlinear Poisson equation: 

V2\E = D(-\E)-", (23) 

with the boundary conditions given by (20). 

1II.C The Vekstein and Priest Solution for the Downstream Region. 

The basic approach to the analysis of the cusp region was set forth by Vekstein and Priest 

in connection with the solar corona problem [6,7]. Although the global geometry in the case 

of two merging cylindrical plasmas is rather different, a significant part of their analysis still 

applies. In this sub-section we present, in a slightly different notation, that part of Vekstein 

and Priest's analysis of the downstream region, which is relevant to our problem. 

In the vicinity of the endpoint ( r  << L )  the asymptotic expression for the shape of the 

separatrix can be written as 

where ,6 > 0, K > 0. 

For r << L we expect that Eq. (23) has a scaling solution of the following form: 

fij = -r*f([)  

where [ = C$/4s = C$/Krp, 0 < t < 1. 

One can write down the expression for magnetic fields in terms of f(t): 

- ar*-l f ([)  - pr@-l f ' ( [ ) [  afij 

dr 
B4 = -- - 

The requirement that B,.,Bd go to zero as r + 0 gives 

a > l + / 3 > 1  
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Substituting (25 )  into Eq. (23 )  we get 

For very small r ,  such that ~ $ ~ ( r )  << 1 ,  the first term in the brackets is much greater 

than all the other terms; the function f(t) and its derivative are finite (or small), and f"([) 

changes, as can be seen from Eq. ( 2 9 ) )  from a finite constant at [ = 0 to infinity at E = 1. 

Thus, in the limit r << L ,  Eq. (23 )  is indeed satisfied by the scaling solution (25 )  with 

2 p + 2 - a  n =  
Q 

and with f(f)  satisfying the following second order ODE: 

x = 2 D K 2  > 0 

The boundary conditions for f([) follow from Eq.(20): 

f'(0) = 0 

Taking into account that f'([) 5 0 everywhere (so that B, 2 0, see Eq. ( 2 6 ) ) )  and defining 

fo = f (O),  we obtain from Eq. (31 ) :  

The solution of (33 )  is given implicitly by integration: 

The boundary condition f(1) = 0 can be used to determine the value of f([) on the 

midplane = 0 in terms of x and n: 
1 2 
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From Eq. (33) and again using f (1) = 0 we get: 

1-n 

Magnetic field components on the separatrix are: 

f‘(1) > 0 1 ra-l-P &(r) = -z 
B&) = -pr”-l f‘(1) > 0 

Since p > 0, B,, >> B4s for r + 00. 

1II.D The Volume per Flux. 

Our main goal is to determine the three power exponents a, p, and n describing the 

solution in the vicinity of the endpoint. Eq. (30) gives us one relationship between the 

exponents. In this section we show that in the case of two merging plasmas (not considered by 

Vekstein and Priest), it is possible, under certain conditions, to derive a second relationship 

between the power exponents. Finally, in section III-E, the matching with the upstream 

solution will give us the third relationship (which will differ from that obtained by Vekstein 

and Priest), thus fixing the values of a, p, and n. 

The total volume per flux on field line !P is: 

dl V ( Q )  = 1”’ 
0 B(Z,Q)’ (39) 

where the integral is taken along a quarter of the field line in region 11, namely, from the 

cusp region up to the y-axis near point A2. 

We are looking at the volume per flux on a field line close to the separatrix, corresponding 

to small P. To zeroth order in Q, the volume per flux is equal to the value on the separatrix 

V(0). Our goal is to estimate the corrections to V(0) of the lower than linear order in 9. 

2The symmetry with respect to the 5- and y-axes allows us to consider only the upper right 

quadrant of our system, so that the actual total volume per flux should be four times the value in 

Eq. (39). 
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For compressible plasma, we show that the leading correction to the volume per flux 

should be proportional to (-!If)'-.. Vekstein and Priest discussed this correction for the case 

of open field lines in a force-free equilibrium produced by the footpoint shearing displacement 

[7,8]. In the case of the reconnective evolution of two merging cylindrical plasmas such a 

non-regular correction can be explained as follows. 

First, let us estimate the difference between the magnetic field B(r, 0) on the separatrix 

Q = 0 and the magnetic field B(r,  Q) on a field line Q < 0 close to the separatrix. This is 

possible due to the fact that j is constant along magnetic field. At some finite distance r 

from the endpoint the magnetic field line is almost parallel to the separatrix, and we can 

write, denoting the distance from the separatrix by x': 

B(r, Q) = B(r, 0) + - 47F. l ' j d x '  = B(r, 0) - D 
C 

If Q is small enough, the magnetic field does not change significantly, and we can estimate: 

dx' = s. Then, 
D (-!P)l-rn 

B(r, Q) = B(r, 0) - - B(r,O) I - n 

plus higher order terms, which we neglect here. Notice that we can regard the difference 

between B(r, Q) and B(r, 0) as a small correction only if D( << B2(r, 0). The smallest 

value of B(r,O) is at distances T << L,  where we can estimate B(r,O) -y(l)/KF-'-p. 

Thus, for the expression (40) to be valid we need 

where &(Q) = ( - Q / f o ) l / a  is the distance from the cusp point to the point where the field 

line \Ir crosses the midplane (see Fig. 3). 

Eq. (40) and pressure balance across the magnetic field then give: 

D AP(Q) = P(Q)  - P(0) = - > O  
47~. 1 - n  

Now, assume that in region I1 plasma density is constant along each field line. This can be 

justified by observing that due to the dissipative effects in the infinitesimally thin separatrix 
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region, such as parallel thermal conductivity, the entropy density is equalized along each 

newly reconnected field line. After reconnection, the quantity s G P/pT* (here we denote 

the adiabatic constant by yo to distinguish it from the power exponent y defined later in 

this section) remains to be constant along each field line, since plasma evolves adiabatically 

in region 11: s = s ( 9 ) .  Since the pressure is also constant along magnetic field, then so is 

the plasma density: p = p ( 9 ) .  

Now, during the adiabatic plasma evolution after reconnection, the value of s on a given 

field line in region I1 does not change. This value is equal to its initial value on the same field 

line before reconnection, plus a change due to the entropy production which occurred inside 

the reconnection layer and the separatrix at the time when the given field line underwent 

reconnection. In general, both the initial value of s and its change are regular smooth 

functions of the field line label 9. Therefore, s ( 9 )  can be Taylor-expanded at any value of 

9 in region 11. In particular, for a field line 9 sufficiently close to the separatrix \-Ir = 0 we 

can write: 

s(@) = s(0) + s’(0)Q 

This equation means that there is no deviation of s ( 9 )  from s (0 )  of lower than linear order 

in 9. 

Thus, using Eq. (42) and the definition of s ( 9 ) ,  we can estimate Ap(9) = p(Q) - p ( 0 )  

as 

The mass M ( Q )  on the given flux surface is also conserved, which means that, just as we 

did for s ( 9 ) ,  we can write: M(B) = M ( 0 )  + O(9).  On the other hand, M ( 9 )  = p(@)V(9), 

so, to lowest order in (-Q), 

D ( -9) l -n  
AV(B) = V(U) - V(0) = -V(O) * < O  

LinyoP(0) 1 - n (44) 

We have thus shown that the leading correction to the volume per flux is negative and is of 

order ( -Q) l -n,  as stated above. (The transition to the incompressible case can be obtained 
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by taking the limit yOP(0) +- 00, in which case the (-Q)'-"-correction vanishes, see section 

111-G.) 

Since, according to (40)) B ( r ,  S )  < B ( r ,  0 ) ,  the fact that AV(Q) < 0 can be attributed 

only to the shortening of field lines with increased (-9). This means that the contribution 

from the vicinity of the cusp-point (where, as can be seen from Fig. 3, the field lines do 

shorten) must play an important role. In order to isolate the role of this contribution, we 

shall divide the whole volume per flux on a given field line into two parts (see Fig. 3): 

where V<(R, Q) corresponds to r < R, and V>(R, S )  corresponds to R < r < R,,,. Here 

R,,, is the distance from the origin to the point A at the top, and R is chosen so that 

R << L, hence +,(R) << 1, and Eq. (25) is still valid. On the other hand, we take R large 

enough: R >> Rl(9).  In other words, for given small R << L we consider field lines that are 

sufficiently close to the separatrix. 

Let us first estimate the correction due to V>(R, S).  For r > R >> Rl(Q), magnetic field 

lines are almost parallel to the separatrix, and we can use Eq. (40) for the magnetic field. 

This equation enables us to estimate: 

Note that the correction is always positive: V>(R, Q) > V>(R, 0). Since, according to (44), 

the total AV(Q) is of order (-Q)'-. and negative, this means that AV<(R,Q) must also 

be of the same order and negative. The condition for this to be possible will give us an 

additional relationship between Q and p. 
Let us now consider V<(R, Q). Using Eq. (26) for B,, we get 

Going from the integration over r to the integration over f at fixed Q, and using expression 
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(33) for f'(f), we get 

y=-  2 + P  
(I! 

We now consider the asymptotic expansion of (49) in 6 << 1 for different values of y and 

n. 

It is easy to  see that, if y < 1, I (&)  converges as E + 0, and V<(R, S )  + 00 as Q + 0. 

Therefore, in order for the volume per flux on the separatrix V<(R, 0) to be finite, we must 

require that 

y > l  +- ct!<2+p (51) 

Then, the integral (49) diverges as E + 0: I (&)  N 5c1--Y + +m , and so, to the lowest 

order in ( -S)  , we get: 

K R2+P-a 

Y(1) 2 + p - a  
V < ( R ) S )  N -- = V<(R, 0) 

(This result for V<(R, 0) and the condition (51) can also be obtained immediately by using 

Eq. (37) for Brs(r).) 

An expression similar to (48-49) and the result (52) for the volume per flux on the 

separatrix have been derived by Vekstein and Priest [7], and are valid in either case. However, 

the next order terms in the expansion of I (&) ,  corresponding to the difference between 

V<(R, m) and V<(R, 0)) must be analyzed differently. We can write 

where 
1 

E 
AI(&) = 1 x-? [ 
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Notice that the first term is always positive and the second term is negative. 

Suppose that the integral in (54) goes to infinity as e + 0, i.e. that the corresponding 

integral from 0 to 1 diverges at lower limit. Then, since the second term is finite, the 

whole AI(€) is positive, and so AV<(R,S) is of the order (-S)l-n and positive. But as 

we showed above, AV>(R, Q )  > 0. Thus, the total change in volume per flux, AV(q) = 

AV<(R, S) + AV,(R, S) will have to be positive, and it will be of order (-S)l-n. Actually, 

under the assumption that AI(€) diverges, AV>(R,Q) converges as R + 0, so, to lowest 

order in (-S), AV(S) = AV>(O,S) > 0. However, from Eq. (44) we know that the 

total AV(S) must be negative. Thus, we obtain a contradiction, and we therefore have to 

conclude that, in order to get a negative correction of order (-Q)l-n to volume per flux, the 

coefficients 7 and n must be such that the integral s,' x - T [ l / d p  - 11 dx converges. 

This convergence condition can be written as 

7 + n < 2  
4 
3 aY>-+p  

Assuming that condition (55) is satisfied, we can write: 

where 

1 €2--y-n 

AI(&) = G(7,n) - - - 7-1 2 ( 2 - y - n ) '  

(55) 

Going back to AV>(R,Q) we notice that, for r - R << L we can estimate B(r,O) = 

&(r, 0) - P-l-0, and dl N dr. Then J & - J r-3(a-1-0)dr, and taking into account 

condition (55)) we see that the main contribution to this integral comes from the lower limit 
R R 

r = R << L. Isolating this contribution, we can write: 
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Because of (55)) the first term becomes much larger than the independent of R second term 

as R + 0. Because f'(1) < 0, the whole expression is then positive. 

One can easily see that the first term in (58) is exactly equal to the last term in (56) 

with the opposite sign, so these two terms cancel each other in the expression for total 

AV(R,Q).  This means that the dependent on R part of the contribution to AV of order 

vanishes, as it should. Thus, we can write the expression for the deviation of the 

volume per flux from its value on the separatrix up to terms of lower than linear order in !P 

as : 

a Y - 1  (59) 

This expression includes terms of order (-!P)'Y-', originating from AV,(R, Q), and also 

terms of order (-Q)'-n (note that because of (55)) (-Q)lFn << (-Q)y-'). The terms 

proportional to (-Q)l-n are due to  the second (finite) term in Eq. ( 5 8 ) )  and also due to the 

higher order terms in the expansions (22) for j (Q) ,  (24) for 4s(r), (25) for Q(r ,  4) )  which 

we have neglected so far. (For example, a contribution to AV,(R, Q) of order (-f4)1-n can 

be obtained by adding a term of order ( -Q)y+2n-2 << (-Q)-" to j (Q).)  These higher order 

terms can not be determined without the knowledge of the whole global equilibrium. Their 

role here is to produce the correction to the volume per flux of order ( -Q)'-n,  which would 

be in agreement with (44). 

From Eq. (44)) the lowest order term in AV(Q) should be of order (-Q)'+. Since 

y - 1 < 1 - n, this can be true only if the dominant term in Eq. (59) vanishes, that is if the 

following relationship between y and n is satisfied: 

Defining I? = E, 1 < I' < 2, equation (60) can be written as 

1 1 [m - 11 dt 
-- - G(r) = J t-r 1 
r-1 0 
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The solution of this equation is = 3/2. This solution is unique, because the LHS mono- 

tonically decreases with I’, and the RHS monotonically increases with r. Recalling the 

definition of I?, and that of y, we can express all the power exponents in terms of p: 

3 - n  3 1 1 y=- j a = P + -  j n = 1 - - = 1 - -  
2 2 Q p+; 

We see that inequalities (as), (51), and (55) are satisfied, and that from the condition j3 > 0 

it follows that n > 1/3. 

The power exponent p can not be determined from the local analysis of the downstream 

region only. In order to determine it, we need to match the downstream solution to the 

upstream solution. One important observation, however, can be made at this point: from 

Eqs. (37) and (62) we see that the dependence of the radial magnetic field on the separatrix 

on r is independent of and can be written as 

I?&) = -- 1 f’(1) r1’2 
K 

1II.E Solution in the Upstream Region. <\ 

Now let us turn to the upstream region. We want to get the additional relationship 

between CY and p from the condition of pressure balance across the separatrix. 

Just as in region 11, the magnetic field in region I is determined from the Poisson equation 

(18). This region is also in the state of magnetostatic equilibrium, so j = j (Q) .  What type 

of behavior can this function possess? Can it be singular at Q = 0, or is it just a finite 

function? We show that the latter case must be true. 

Indeed, in this region, consider a flux surface Q > 0,  close to the separatrix 9 = 0,  and 

compare the volume per flux V ( Q )  on this surface with that on the separatrix, V(0). Our 

analysis here is analogous to that in the beginning of the previous section. In the upstream 

region, the magnetic field on the separatrix B,(Z) = B(2,O) is finite everywhere along the 

separatrix. The same is true for B(Z, 9), the magnetic field on the given flux surface. The 

magnetic field line 9 is essentially parallel to the separatrix, so we can estimate B(Z, @) as 
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B(1, 9) fri B(1,O) - 7 4s Jo " j (W)&.  Since 9 is small, we can approximate B(1, 9') in the 

second term by B(Z, 0), which gives B(1, @) N B(1,O) - cBo 47T J" j (  !V)d@'. 

Now if we assume that j (9 )  has a power-law singularity at Q = 0: j ( 9 )  = 

-(cD'/4~)9-~,0 < m < 1, then, 

DI 91-rn  
B(1, 9) = B(1, 0) + -- B(1, 0) 1 - m 

Then, just as we did in section 111-D, we can use pressure balance to find A P ( 9 ) ,  the 

adiabatic law to find Ap(Q), and the mass conservation to finally write 

DI 91-m 

AV(Q) = V ( 9 )  - V(0) = V(0)  > O  4~70P(O) 1 - m 

On the other hand, we can estimate V ( 9 )  up to terms of order 91-rn >> 9 directly using 

Eq. (64): 
D' ql-Tn L1 dl V ( 9 )  = V(0) - - 

1 - m  

The integrand is a regular positive finite function, and therefore, the integral Jt' & 
is just a finite positive constant, independent of 9. This means that we get a negative 

correction to V ( 9 )  of order 9ldrn >> 9, in contradiction with Eq. (65). Therefore, we 

conclude that j (9)  can not be singular at 9 = 0 in the upstream region I. 

Thus, to the lowest order in 9 we have j(U) N j ( 0 )  = const. The correction to the 

volume per flux due to this current density will be linear in Q. 

In this case, the magnetic field structure in region I in the vicinity of the endpoint is 

determined by the Poisson equation 

V2Q = C = const, 

where C = -:j(O), with the boundary conditions 

9 = 0  at + = T  andat  + ~ = q 5 ~ = K r  P 

The source term on the RHS of this equation turns out to be unimportant, and we can 

consider Laplace's equation instead. 
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First, let us discuss the analysis of the upstream solution given by Vekstein and Priest 

[7]. As we shall see, this will lead to a contradiction in our case. We write the solution of 

Laplace’s equation as 

Q = Borsin# + BlrPsin[p(# - T ) ] ,  p > 1, Bo > 0 (69) 

The boundary condition Q(q4 = T )  = 0 is satisfied automatically. In order to satisfy the 

boundary condition on the separatrix 4 = Kr@ to the lowest order in r we demand 

p = p + 1  

and 

B1 sinP./r = -BOK < 0 

The radial component of the magnetic field is 

On the separatrix we have: B& N B,?sl N Bo2 - 2(1 + ,B)BIBorp cos PT. On the other 

hand, in region 11, B;4,, N &[f’(1)]2r2(a-@-1). Then the pressure balance, B21 - B211 = 

B,2 = const, gives 
3 
2 a = 1 + - p  

and 
2 (y) < o  

The two inequalities (71) and (74) can only be satisfied if tan,& > 0, i.e. if 

1 3 
2 2 0 < / 3 < - ,  or 1 < p < - ,  etc. 

(73) 

(74) 

(75) 

Now one can easily see that this solution is incompatible with our solution for region 11. 

Indeed, in previous section we derived from the volume per flux arguments the relationship 

between Q and P:  a = p+;. Combined with equation (73) this equation uniquely determines 

p = 1 and Q = 5/2, which is in contradiction with inequalities (75). 
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Therefore, solution (69) presented by Vekstein and Priest is not suitable for our case of 

reconnection of two cylindrical plasmas. 

There are two ways out of this situation. The first one applies for a range in ,O > 1 ,  and 

the second one is a special case with p = 1/2. 

First, let us consider p > 1. In the Vekstein and Priest solution, the correction term 

BlrP sin[17(4 - 7r)] in (69) has to serve two functions: it must make @ = 0 at 4 = +s to lowest 

order in r ,  and it also must provide the variation of the magnetic field on the separatrix 

needed for the pressure balance. Now, if ,O > 1, p > 2, we can add the term B2r2sin24, 

which will give a bigger contribution to the magnetic field on the separatrix, and at the same 

time, it’s contribution to will be negligible. Thus, we can have a family of solutions 

with ,O > 1: 

@ = Bo r sin 4 + B1 rp sink(+ - 7r)] + B2 r2 sin 24 

and p = 1 + p > 2, & sinP7r = -BOK, and BoB2 = (g)2 > 0. 

The magnetic field up to the first order in r is given by 

B2 = Bi + 4BoB2 r cos 4 (77) 

Although at first glance this solution appears satisfactory, a more careful look at this ex- 

pression reveals a potential problem with this solution: the absolute value of the magnetic 

field along the separatrix increases monotonically as we pass the endpoint from left to the 

right, i.e. the magnetic field does not have minimum at the endpoint. It seems to be dif- 

ficult to incorporate such magnetic field into the usual picture of reconnection, where the 

outside magnetic field is strongest at the middle of the reconnection layer. However, this 

solution may explain the origin of the 0-point configuration which is observed in the MRX 

experiment in the co-helicity merging [ l ] .  

The second case, which we believe is more physical and seems to satisfy all the physical 

conditions we can impose, is the particular case, ,O = 1 / 2 .  

Then, the solution satisfying @(+s) = 0 can be written as 

3 
2 \I, = Bo r sin 4 - BOK r3f2 cos -4 + B2 r2 sin 24 

26 



The last term gives negligible contribution to XP(~J~~),  however, its contribution to the mag- 

netic field on the separatrix is of the same order as that of the second term: 

(compare with the equilibrium solution by Morozov and Solov'ev for a vacuum magnetic 

field outside a cusp containing plasma without magnetic field [14].) 

The pressure balance across the separatrix gives us the expression for [f'(1)I2 in terms 

of Bo, BZ and K: 

(80) [f'(l)12 = 4 K  15 4 Bo 2 + 4K2Bo& 

The magnetic field along the reconnection layer, rJ5 = 7r is also increasing with r: 

Thus the cusp-point (0,O) is really the point of minimum of the upstream magnetic field. 

It is interesting that a change of the entire solution induced by changing the constant K is 

effectively the same as adding the Syrovatskii solution Eq. (8),  which is also proportional 

to fi near the endpoint, to the solution in the upstream region. 

Now, even though we managed to determine the power exponents, we are still left with 

uncertainty regarding the value of B2. We think that B2 is determined by the entire global 

equilibrium. The only condition we can impose on B2 is that the RHS of (80) must be 

positive. 

1II.F The Magnetic Field Structure and the Velocity Field in the Downstream 

Region for ,B = l /2.  

For the special case p = 1/2 we can obtain exact analytical expressions for the magnetic 

flux function in region 11. Using Eqs. (62) and (30)) we get: 

(82) 
1 1 p = -  a = 2  n = -  
2 2 

413 113 Then, using (35) and (36), we find fo = (i) ( 2 ~ ) ~ / ~ ,  and f'(1) = - (i) ( 2 ~ ) ~ / ~ .  
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The integral on the LHS of Eq. (34) can be calculated exactly resulting in a cubic 

equation for u = -y(t)/(fi f:I4) = /l - Jf/f.: u3 - 3u + 25 = 0,  where 5 = 41K-J;;. 

The solution of this equation is u = 2 sin (i arcsin () , so that 

and the components of the magnetic field are given by Eqs. (26-27): 

B, = 4 6 j : l 4  sin (i arcsin F> 
B$ = 2rf((> + J 2 x f t I 4 r t  sin (i arcsin e) 

Now we can find the plasma velocity in the vicinity of the cusp point. In order to find 

the velocity field for a steady state ideal MHD flow in a given magnetic field configuration, 

we make use of mass conservation and also of the fact that the density is constant along each 

field line. Now, consider a certain tiny fluid element. At any given moment, the position 

of this fluid element can be described by two variables ( r ,  8) .  The motion of this element 

in the downstream region can be specified by the integral of motion, the mass per flux 

p(8)V<(r, q). Using expression (48) for V,(R, 8)  and Eq. (43) for p ( Q ) ,  we have 

(84) 

The correction in the parentheses due to the variation of the density with 8 can be 

neglected for small ( -8) .  For the steady state situation, the motion of a given field line is 

described by a simple relationship: Q(t) = -cEt, where E is the magnitude of the constant, 

uniform electric field. Then, the radial position of the given fluid element as a function of 

time is 

(85 )  
1 

r ( t )  = - ( a t  C )  , 

where C = [ (2x)2/3 ( z )  3/8 V, /2K] = const. The radial velocity is obtained by simple 

differentiation: 

f o  
2 
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An interesting feature of this formula is that the radial velocity is constant along the field 

line, and decreases away from the separatrix (-8)-1’2, in the same way as the current 

density does. 

1II.G The Incompressible Case. 

In this section we show that our results are also valid for incompressible plasma, although 

some of the arguments differ from those used in the compressible case. 

For ideal plasma the incompressibility condition can be expressed in terms of the global 

condition of the volume per flux conservation: 

In each of regions I and I1 the volume per flux is conserved, because plasma is essentially 

ideal. But we can make even stronger statement that, despite the tiny slippage of plasma 

across magnetic field which occurs at the instant of reconnection of a given flux surface, 

the volume per flux on this surface virtually does not change, i.e. V’(8) N- fil(9). This 

is because the amount of plasma that is transferred from the given flux surface to the next 

surface is the same (in leading order) as the amount of plasma that is transferred from the 

previous surface to the given surface. Thus, at any moment of time the function V(9)  is 

the same as it was initially. In general, we expect V ( 8 )  to be a regular smooth function, 

which can be Taylor-expanded at any value of 9. In particular, if we again set 9 = 0 on 

the separatrix flux surface (undergoing reconnection at this particular moment), then for 

sufficiently close flux surfaces (on both sides of the separatrix) we can write: 

V ( 8 )  = V(0)  + V’(0)8 (88) 

This equation means that any deviation of V ( 8 )  from V(0)  of the lower than linear order 

in 9 is not possible. 

First we show that one has to have finite surface current in the separatrix in the incom- 

pressible case. Consider a flux layer A 9  before and after reconnection. Before reconnection, 
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the length of the whole flux layer is L + L1, after reconnection it is just L1. In the case of 

incompressible plasma, the volume of the flux layer is conserved; thus, to compensate for 

the shortening of the field lines, the thickness of the layer is increased by a factor 1 + L/L1: 

where A x  is the average thickness before reconnection, and Ax' after reconnection. 

If BI is some average magnetic field before reconnection, and BII - after reconnection, 

then we have: 

(89) 
L1 BII = BI- 

L+L1 
L The difference gives us the non-zero surface current density in the separatrix: AB = B r m .  

Then we can apply the argument described at the end of section 111-A to see that in this 

case we again get a cusp at the end of the reconnection layer. 

All the analysis in sections 111-B and 111-C is independent of the compressibility assump- 

tion and applies also for the incompressible case. 

A consideration of the volume per flux similar to that in section 111-D gives us again 

relationship (62) between cy and p. Indeed, just as in the compressible case, one can easily 

see from Eqs. (46) and (53-54) that, if y + n > 2, the leading corrections to V,(R, S )  and 

to V>(R, @) will be of order (-S)l-n, and they will be positive. Thus, in this case, the 

condition (88) that the volume per flux stay constant up to lower than linear orders in 9 

can not be satisfied. We therefore have to conclude that condition (55) has to be satisfied 

even for the incompressible case. Also we must require that, in order to preserve constant 

volume per flux, the contribution to AV(S)  of order (-@)y-' must vanish, which gives us 

relationship (62). As for the terms of order (-S)l-n, the R-dependent parts of AV>(R, 9) 

(Eq. (58)) and AV,(R,S) (Eqs. (53),(56)) cancel each other, just as in the compressible 

case, and the second (finite) term in expression (58) for AV>(R,'J!) must be cancelled by 

the previously neglected higher order corrections to AV<(R, S). Thus, a = 3/2 + ,O for the 

incompressible plasma as well. 
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The analysis of the upstream region in the incompressible case is also essentially the 

same as for compressible plasma. The only difference is that, in order to show that j (@)  

can not have a power-law singularity near the separatrix, one merely has to use equation 

(66) for the volume per flux. This equation gives a correction of order ( -@) l -m,  which is 

in contradiction with condition (88). In all other aspects, the solution in the incompressible 

case is the same as in the compressible case, leading to the same power exponents (82), the 

same function f([) given by Eq. (83), and the same velocity Eq. (86). 

1II.H Comparison with the Results of Vekstein and Priest. 

The analysis in sections 111-A to 111-E is very similar to the pioneering analysis of Vek- 

stein and Priest [5-81, even though they considered a different problem with different con- 

ditions to determine V(Q). It turns out to be possible to evaluate the analogous quantity 

V,(R, @) in their problem using the techniques of section 111-D. This analysis shows again 

that AV,(R, V!) is of order (Q)l-n and positive. This sign is opposite to that required for the 

total AV(@) (see Eqs. (17-18), (29) of Ref. 8). Therefore, there must be a larger negative 

contribution to AV(Q) from the neighborhood of the cusp point. This in turn means that 

inequality (55), which is opposite to the inequality given after Eq. (30) in Ref. 8, must be 

satisfied. Then, just as in the case considered in the present paper, the dominant order term 

in AV,(R, Q) will be proportional to ( - q ) T - ' ,  and the condition that this term vanishes 

again gives CY = p + 3/2. Higher order corrections to AV, together with AV, add up to the 

correct sign and order of AV. 

Thus, the downstream analysis of the problem considered by Vekstein and Priest should 

be identical with our analysis, and similarly, their upstream analysis should include the 

additional r2-term. In other words, even though the problem itself is different, the solution 

should be identical with ours. 

IV. CONCLUSIONS 
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In this paper we have studied the magnetic and velocity fields in the neighborhood of 

the endpoint of the reconnection layer. In particular we considered the 2-D MHD steady 

state problem in the geometry of two merging cylindrical plasmas relevant to the Magnetic 

Reconnection experiment (MRX). 

The magnetic field structure near the endpoint strongly depends on the presence of other 

current sheets attached to the reconnection current layer. In the case when there are no such 

attached currents, we present an explicit expression for the surface current in the layer, which 

forms a generalization of the well-known Syrovatskii solution. In general, the configuration 

is characterized by a 60" Y-point with the characteristic square-root dependence of the 

magnetic field on the distance from the endpoint. In this case, universal expressions for 

magnetic and velocity fields are obtained. 

However, the condition of magnetostatic equilibrium taken together with energy and 

mass conservation (or volume per flux conservation for incompressible case) unavoidably 

leads to finite surface current along the separatrix. This surface current then leads to a 

cusp-like configuration near the endpoint. 

To properly investigate the dynamics in the reconnection and separatrix layers, it is 

necessary to determine the flow through this cusp region. For this it is necessary to find 

the structure of the magnetic field in the neighborhood of the cusp. Surprisingly, because 

of the global volume per flux constraints, arising from the constants of motion, such as 

mass, entropy, and flux, we find that significant contribution to  AV(@) must come from 

the cusp region itself. Together with the matching conditions with the upstream region, 

this constraint turns out to be strong enough to determine the complete behavior of the 

magnetic field near the cusp, up to a couple of constants, independent of the global behavior 

of the equilibrium solution away from the cusp. This solution is given explicitly in section 

111-F. 

We find that an extension of the analysis pioneered by Vekstein and Priest [6-81 enables 

us to carry out this program, and to arrive to an almost complete determination of these 

fields. 
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APPENDIX: Singular behavior of j ( S )  near the Separatrix in region 11. 

The first question we need to ask is whether the source term in Eq. (18) is important. 

If we neglect this term, thereby assuming that the current is concentrated only in the 

reconnection layer and in the separatrix, and that the current density in regions I and I1 is 

exactly zero, we will easily see that the solution in region I1 is in fact exponentially small 

(Q - and the volume per flux on the separatrix diverges, which contradicts the 

constraints given in section 111-D. This means that the source term is in fact important in 

the downstream region. 

Now we need to find out, whether j ( Q )  can be a smooth function of Q as 9 -+ 0. If this 

were so, then close enough to the separatrix we could replace the source term in Eq. (18) 

by its value at Q = 0: 

V2Q = C = const (Al)  

Any solution of this equation can be written as the sum of a particular solution Q1 = 

(Cr2/2)  sin2 q5 of the Poisson Equation, and a solution 9 0  of the corresponding Laplace's 

equation. Taking into account that 9 must be even in q5, we can write 

03 

Qo = A;rp' cos(p;q5) 
i=l 

The boundary condition 9 = + = 0 at q5 = q5s gives: 

and p l  = 2(1 + p )  > 2 
C K 2  

2 ,  
AI = -- 

Then the magnetic field Bs on the separatrix to the lowest order in r is 

(the contribution from 9 0  is negligible), and we immediately see that the volume per flux 

on the separatrix diverges: 
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Thus, it is impossible to construct a magnetostatic equilibrium in region I1 with j (Q)  

staying finite as Q += 0 and with convergent volume per flux on the separatrix. We then 

have to conclude that j ( U )  must have a singularity at U = 0. 
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I - unreconnected 
flux 

FIG. 1. The global two-dimensional geometry of the problem. Two reconnecting plasma cylin- 

ders are shown when they are partially reconnected. Regions I are the unreconnected cylindrical 

regions, and region I1 is the region of reconnected flux. The region between the two cylinders is 

the reconnection layer, while the thin surface between regions I and I1 is the separatrix layer. The 

region inside the dashed circle around one of the two endpoints of the reconnection layer is the 

region of primary interest of this paper. Regions I and I1 are in near magnetostatic equilibrium, 

while the flows in the thin layers are fast. 
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FIG. 2. The region about the endpoint of the reconnection layer for the Syrovatskii case, where 

there is no surface current in the separatrix. Polar coordinates (r,  4) with the origin at the endpoint 

are introduced to  represent the local magnetic field. 
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FIG. 3. The neighborhood of the endpoint when there is a surface current in the separatrix. The 

magnetic field structure is characterized by the cusp geometry, with the shape of the separatrix 

Q = 0 described in the polar coordinates by #s(r )  = KTP. Region I is the upstream region, and 

region I1 is the downstream region. The point where the field line !D crosses the midplane y = 0 

is Rl(!D). The circle of radius R is the dividing line between the two contributions to the volume 

per flux V(!D) = &(R, Q) + V>(R, Q). 


