5 research outputs found

    Generation of Genetically-Modified Human Differentiated Cells for Toxicological Tests and the Study of Neurodegenerative Diseases

    No full text
    Human differentiated cell types, such as neurons or hepatocytes, are of limited availability, and their use for experiments requiring ectopic gene expression is challenging. Using the human conditionally-immortalized neuronal precursor line LUHMES, we explored whether genetic modification in the proliferating state could be used for experiments in the differentiated post-mitotic neurons. First, alpha-synuclein (ASYN), a gene associated with the pathology of Parkinson’s disease, was overexpressed. Increased amounts of the protein were tolerated without change of phenotype, and this approach now allows further studies on protein variants. Knockdown of ASYN attenuated the toxicity of the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+). Different lentiviral constructs then were tested: cells labeled ubiquitously with green (GFP) or red fluorescent protein (RFP) allowed the quantification of neurite growth and of its disturbance by toxicants; expression of proteins of interest could be targeted to different organelles; production of two different proteins from a single read-through construct was achieved successfully by an expression strategy using a linker peptide between the two proteins, which is cleaved by deubiquitinases; LUHMES, labeled with GFP in the cytosol and RFP in the mitochondria, were used to quantify mitochondrial mobility along the neurites. MPP+ reduced such organelle movement before any other detectable cellular change, and this toxicity was prevented by simultaneous treatment with the antioxidant ascorbic acid. Thus, a strategy has been outlined here to study new functional endpoints, and subtle changes of structure and proteostasis relevant in toxicology and biomedicine in post-mitotic human cells

    Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP<sup>+</sup>

    No full text
    Assessment of the network of toxicity pathways by Omics technologies and bioinformatic data processing paves the road toward a new toxicology for the twenty-first century. Especially, the upstream network of responses, taking place in toxicant-treated cells before a point of no return is reached, is still little explored. We studied the effects of the model neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) by a combined metabolomics (mass spectrometry) and transcriptomics (microarrays and deep sequencing) approach to provide unbiased data on earliest cellular adaptations to stress. Neural precursor cells (LUHMES) were differentiated to homogeneous cultures of fully postmitotic human dopaminergic neurons, and then exposed to the mitochondrial respiratory chain inhibitor MPP+ (5 ΌM). At 18–24 h after treatment, intracellular ATP and mitochondrial integrity were still close to control levels, but pronounced transcriptome and metabolome changes were seen. Data on altered glucose flux, depletion of phosphocreatine and oxidative stress (e.g., methionine sulfoxide formation) confirmed the validity of the approach. New findings were related to nuclear paraspeckle depletion, as well as an early activation of branches of the transsulfuration pathway to increase glutathione. Bioinformatic analysis of our data identified the transcription factor ATF-4 as an upstream regulator of early responses. Findings on this signaling pathway and on adaptive increases of glutathione production were confirmed biochemically. Metabolic and transcriptional profiling contributed complementary information on multiple primary and secondary changes that contribute to the cellular response to MPP+. Thus, combined ‘Omics’ analysis is a new unbiased approach to unravel earliest metabolic changes, whose balance decides on the final cell fate
    corecore