28 research outputs found

    Targeting the hotspots: investigating spatial and demographic variations in HIV infection in small communities in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In South Africa, the severity of the HIV/AIDS epidemic varies according to geographical location; hence, localized monitoring of the epidemic would enable more effective prevention strategies. Our objectives were to assess the core areas of HIV infection in KwaZulu-Natal, South Africa, using epidemiological data among sexually active women from localized communities.</p> <p>Methods</p> <p>A total of 5753 women from urban, peri-rural and rural communities in KwaZulu-Natal were screened from 2002 to 2005. Each participant was geocoded using a global information system, based on residence at time of screening. The Spatial Scan Statistics programme was used to identify areas with disproportionate excesses in HIV prevalence and incidence.</p> <p>Results</p> <p>This study identified three hotspots with excessively high HIV prevalence rates of 56%, 51% and 39%. A total of 458 sexually active women (19% of all cases) were included in these hotspots, and had been exclusively recruited by the Botha's Hill (west of Durban) and Umkomaas (south of Durban) clinic sites. Most of these women were Christian and Zulu-speaking. They were also less likely to be married than women outside these areas (12% vs. 16%, p = 0.001) and more likely to have sex more than three times a week (27% vs. 20%, p < 0.001) and to have had more than three sexual partners (55% vs. 45%, p < 0.001). Diagnosis of genital herpes simplex virus type 2 was also more common in the hotspots. This study also identified areas of high HIV incidence, which were broadly consistent with those with high prevalence rates.</p> <p>Conclusions</p> <p>Geographic excesses of HIV infections at rates among the highest in the world were detected in certain rural communities of Durban, South Africa. The results reinforce the inference that risk of HIV infection is associated with definable geographical areas. Localized monitoring of the epidemic is therefore essential for more effective prevention strategies - and particularly urgent in a region such as KwaZulu-Natal, where the epidemic is particularly rampant.</p

    Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes

    Get PDF
    Mpumalanga Province, South Africa is a low malaria transmission area that is subject to malaria epidemics. SaTScan methodology was used by the malaria control programme to detect local malaria clusters to assist disease control planning. The third season for case cluster identification overlapped with the first season of implementing an outbreak identification and response system in the area. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using definitively confirmed individual cases in seven towns over three malaria seasons. Following passive case reporting at health facilities during the 2002 to 2005 seasons, active case detection was carried out in the communities, this assisted with determining the probable source of infection. The distribution and statistical significance of the clusters were explored by means of Monte Carlo replication of data sets under the null hypothesis with replications greater than 999 to ensure adequate power for defining clusters. SaTScan detected five space-clusters and two space-time clusters during the study period. There was strong concordance between recognized local clustering of cases and outbreak declaration in specific towns. Both Albertsnek and Thambokulu reported malaria outbreaks in the same season as space-time clusters. This synergy may allow mutual validation of the two systems in confirming outbreaks demanding additional resources and cluster identification at local level to better target resources. Exploring the clustering of cases assisted with the planning of public health activities, including mobilizing health workers and resources. Where appropriate additional indoor residual spraying, focal larviciding and health promotion activities, were all also carried out

    Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa

    Get PDF
    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population
    corecore