336 research outputs found

    Duffy Antigen Receptor for Chemokines Mediates trans-Infection of HIV-1 from Red Blood Cells to Target Cells and Affects HIV-AIDS Susceptibility

    Get PDF
    Duffy antigen receptor for chemokines (DARC) expressed on red blood cells (RBCs) influences plasma levels of HIV-1-suppressive and proinflammatory chemokines such as CCL5/RANTES. DARC is also the RBC receptor for Plasmodium vivax. Africans with DARC -46C/C genotype, which confers a DARC negative phenotype, are resistant to vivax malaria. Here, we show that HIV-1 attaches to RBCs via DARC, effecting trans-infection of target cells. In African Americans, DARC -46C/C is associated with 40% increase in the odds of acquiring HIV-1. If extrapolated to Africans, ~11% of the HIV-1 burden in Africa may be linked to this genotype. After infection occurs, however, DARC-negative RBC status is associated with slower disease progression. Furthermore, the disease-accelerating effect of a previously described CCL5 polymorphism is evident only in DARC-expressing and not in DARC-negative HIV-infected individuals. Thus, DARC influences HIV/AIDS susceptibility by mediating trans-infection of HIV-1 and by affecting both chemokine-HIV interactions and chemokine-driven inflammation

    Cumulative Viral Load and Virologic Decay Patterns after Antiretroviral Therapy in HIV-Infected Subjects Influence CD4 Recovery and AIDS

    Get PDF
    The impact of viral load (VL) decay and cumulative VL on CD4 recovery and AIDS after highly-active antiretroviral therapy (HAART) is unknown.Three virologic kinetic parameters (first year and overall exponential VL decay constants, and first year VL slope) and cumulative VL during HAART were estimated for 2,278 patients who initiated HAART in the U.S. Military HIV Natural History Study. CD4 and VL trajectories were computed using linear and nonlinear Generalized Estimating Equations models. Multivariate Poisson and linear regression models were used to determine associations of VL parameters with CD4 recovery, adjusted for factors known to correlate with immune recovery. Cumulative VL higher than the sample median was independently associated with an increased risk of AIDS (relative risk 2.38, 95% confidence interval 1.56-3.62, p<0.001). Among patients with VL suppression, first year VL decay and slope were independent predictors of early CD4 recovery (p = 0.001) and overall gain (p<0.05). Despite VL suppression, those with slow decay during the first year of HAART as well as during the entire therapy period (overall), in general, gained less CD4 cells compared to the other subjects (133 vs. 195.4 cells/µL; p = 0.001) even after adjusting for potential confounders.In a cohort with free access to healthcare, independent of established predictors of AIDS and CD4 recovery during HAART, cumulative VL and virologic decay patterns were associated with AIDS and distinct aspects of CD4 reconstitution

    Duffy-Null–Associated Low Neutrophil Counts Influence HIV-1 Susceptibility in High-Risk South African Black Women.

    Get PDF
    Background. The Duffy-null trait and ethnic netropenia are both highly prevalent in Africa. The influence of pre-seroconversion levels of peripheral blood cell counts (PBCs) on the risk of acquiring human immunodeficiency virus (HIV)–1 infection among Africans is unknown. Methods. The triangular relationship among pre-seroconversion PBC counts, host genotypes, and risk of HIV acquisition was determined in a prospective cohort of black South African high-risk female sex workers. Twenty seven women had seroconversion during follow-up, and 115 remained HIV negative for 2 years, despite engaging in high-risk activity. Results. Pre-seroconversion neutrophil counts in women who subsequently had seroconversion were significantly lower, whereas platelet counts were higher, compared with those who remained HIV negative. Comprising 27% of the cohort, subjects with pre-seroconversion neutrophil counts of C) was significantly associated with neutrophil counts (P = 7.9 x10-11). DARC -46C/C results in loss of DARC expression on erthyrocytes (Duffy-null) and resistance to Plasmodium vivax malaria, and in our cohort, only subjects with this genotype had pre-seroconversion neutrophil counts of <2500 cells/mm3. The risk of acquiring HIV infection was ~3-fold greater in those with the trait of Duffy-null–associated low neutrophil counts, compared with all other study participants. Conclusions. Pre-seroconversion neutrophil and platelet counts influence risk of HIV infection. The trait of Duffy-null–associated low neutrophil counts influences HIV susceptibility. Because of the high prevalence of this trait among persons of African ancestry, it may contribute to the dynamics of the HIV epidemic in Africa

    Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial

    Get PDF
    Background Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. Methods We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5–36 months) were enrolled and randomly assigned (2:1) to receive 5 μg R21 plus 50 μg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. Findings From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71–79; p<0·0001) at the seasonal sites and 68% (61–74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71–78; p<0·0001) at the seasonal sites and 67% (59–73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762–974) cases per 1000 children-years at seasonal sites and 296 (231–362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5–17 month age group compared with 18–36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73–84]; p<0·001) and standard (75% [65–83]; p<0·001) sites. Interpretation R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. Funding The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy

    CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1–infected individuals

    Get PDF
    The basis for the extensive variability seen in the reconstitution of CD4+ T cell counts in HIV-infected individuals receiving highly active antiretroviral therapy (HAART) is not fully known. Here, we show that variations in CCL3L1 gene dose and CCR5 genotype, but not major histocompatibility complex HLA alleles, influence immune reconstitution, especially when HAART is initiated at <350 CD4+ T cells/mm3. The CCL3L1-CCR5 genotypes favoring CD4+ T cell recovery are similar to those that blunted CD4+ T cell depletion during the time before HAART became available (pre-HAART era), suggesting that a common CCL3L1-CCR5 genetic pathway regulates the balance between pathogenic and reparative processes from early in the disease course. Hence, CCL3L1-CCR5 variations influence HIV pathogenesis even in the presence of HAART and, therefore, may prospectively identify subjects in whom earlier initiation of therapy is more likely to mitigate immunologic failure despite viral suppression by HAART. Furthermore, as reconstitution of CD4+ cells during HAART is more sensitive to CCL3L1 dose than to CCR5 genotypes, CCL3L1 analogs might be efficacious in supporting immunological reconstitution

    Role of CCL3L1-CCR5 Genotypes in the Epidemic Spread of HIV-1 and Evaluation of Vaccine Efficacy

    Get PDF
    Polymorphisms in CCR5, the major coreceptor for HIV, and CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine, are determinants of HIV-AIDS susceptibility. Here, we mathematically modeled the potential impact of these genetic factors on the epidemic spread of HIV, as well as on its prevention.Ro, the basic reproductive number, is a fundamental concept in explaining the emergence and persistence of epidemics. By modeling sexual transmission among HIV+/HIV- partner pairs, we find that Ro estimates, and concordantly, the temporal and spatial patterns of HIV outgrowth are highly dependent on the infecting partners' CCL3L1-CCR5 genotype. Ro was least and highest when the infected partner possessed protective and detrimental CCL3L1-CCR5 genotypes, respectively. The modeling data indicate that in populations such as Pygmies with a high CCL3L1 gene dose and protective CCR5 genotypes, the spread of HIV might be minimal. Additionally, Pc, the critical vaccination proportion, an estimate of the fraction of the population that must be vaccinated successfully to eradicate an epidemic was <1 only when the infected partner had a protective CCL3L1-CCR5 genotype. Since in practice Pc cannot be >1, to prevent epidemic spread, population groups defined by specific CCL3L1-CCR5 genotypes might require repeated vaccination, or as our models suggest, a vaccine with an efficacy of >70%. Further, failure to account for CCL3L1-CCR5-based genetic risk might confound estimates of vaccine efficacy. For example, in a modeled trial of 500 subjects, misallocation of CCL3L1-CCR5 genotype of only 25 (5%) subjects between placebo and vaccine arms results in a relative error of approximately 12% from the true vaccine efficacy.CCL3L1-CCR5 genotypes may impact on the dynamics of the HIV epidemic and, consequently, the observed heterogeneous global distribution of HIV infection. As Ro is lowest when the infecting partner has beneficial CCL3L1-CCR5 genotypes, we infer that therapeutic vaccines directed towards reducing the infectivity of the host may play a role in halting epidemic spread. Further, CCL3L1-CCR5 genotype may provide critical guidance for optimizing the design and evaluation of HIV-1 vaccine trials and prevention programs

    Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    Get PDF
    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻²⁵ yr⁻¹. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore