129 research outputs found

    Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species

    Get PDF
    Author Posting. © American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 72 (2006): 5742-5749, doi:10.1128/AEM.00332-06.Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 Όm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.This work was funded by the Sea Grant Technology Program (NA16RG2273)

    Development of microsatellite markers in the toxic dinoflagellate Alexandrium minutum (Dinophyceae)

    Get PDF
    Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Molecular Ecology Notes 6 (2006): 756-758, doi:10.1111/j.1471-8286.2006.01331.x.Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.Support for this research provided in part (to DMA) by U.S. National Science Foundation grants OCE-0136861 and OCE-0430724, and the National Institute of Environmental Health Sciences Grant 1 P50 ES012742-01

    Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e9688, doi:10.1371/journal.pone.0009688.Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value < 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a “core” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.This work was primarily funded by a collaborative grant from the National Institutes of Health (R01 ES 013679-01A2) awarded to DB, DMA, and M. Bento Soares. Funding support for DMA and DLE was also provided from the Woods Hole Center for Oceans and Human Health from the NSF/NIEHS Centers for Oceans and Human Health program, NIEHS (P50 ES 012742) and (NSF OCE-043072). Additional support came from the National Science Foundation (EF-0732440) in a grant awarded to F. Gerald Plumley, DB, JDH, and DMA. AM was supported by an Institutional NRSA (T 32 GM98629)

    Toxicity and pathophysiology of palytoxin congeners after intraperitoneal and aerosol administration in rats

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Toxicon 150 (2018): 235-250, doi:10.1016/j.toxicon.2018.06.067.Preparations of palytoxin (PLTX, derived from Japanese Palythoa tuberculosa) and the congeners 42-OH-PLTX (from Hawaiian P. toxica) and ovatoxin-a (isolated from a Japanese strain of Ostreopsis ovata), as well as a 50:50 mixture of PLTX and 42-OH-PLTX derived from Hawaiian P. tuberculosa were characterized as to their concentration, composition, in-vitro potency and interaction with an anti-PLTX monoclonal antibody (mAb), after which they were evaluated for lethality and pathophysiological effects by intraperitoneal (IP) and aerosol administration to rats. Once each preparation was characterized as to its toxin composition by LC-HRMS and normalized to a total PLTX/OVTX concentration using HPLC-UV, all four preparations showed similar potency towards mouse erythrocytes in the erythrocyte hemolysis assay and interactions with the anti-PLTX mAb. The IP LD50 values derived from these experiments (1-3 Όg/kg for all) were consistent with published values, although some differences from the published literature were seen. The aerosol LD50 values (.03-.06 Όg/kg) confirmed the exquisite potency of PLTX suggested by the literature. The pathophysiological effects of the different toxin preparations by IP and aerosol administration were similar, albeit with some differences. Most commonly affected tissues were the lungs, liver, heart, kidneys, salivary glands, and adrenal glands. Despite some differences, these results suggest commonalities in potency and mechanism of action among these PLTX congeners.This work was supported by the Defense Threat Reduction Agency, through the Joint Program Executive Office for Chemical and Biological Defense, Contract number CB10396. Additional support to DMA and DLK was provided by National Science Foundation (Grant OCE-1314642) and National Institutes of Health (NIEHS-1P50-ES021923-01) through the Woods Hole Center for Oceans and Human Health

    Marine harmful algal blooms (HABs) in the united states: history, current status and future trends

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972

    Dihydrodinophysistoxin-1 produced by Dinophysis norvegica in the Gulf of Maine, USA and its accumulation in shellfish

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deeds, J. R., Stutts, W. L., Celiz, M. D., MacLeod, J., Hamilton, A. E., Lewis, B. J., Miller, D. W., Kanwit, K., Smith, J. L., Kulis, D. M., McCarron, P., Rauschenberg, C. D., Burnell, C. A., Archer, S. D., Borchert, J., & Lankford, S. K. Dihydrodinophysistoxin-1 produced by Dinophysis norvegica in the Gulf of Maine, USA and its accumulation in shellfish. Toxins, 12(9), (2020): E533, doi:10.3390/toxins12090533.Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)−m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)−m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)−m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)−m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were >0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.Partial support for this research was received from the National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science Competitive Research, Ecology and Oceanography of Harmful Algal Blooms Program under awards NA17NOS4780184 and NA19NOS4780182 to Juliette Smith (VIMS) and Jonathan Deeds (US FDA), and Prevention, Control, and Mitigation of Harmful Algal Blooms program award NA17NOS4780179 to Stephen Archer. This paper is ECOHAB publication number EC0956

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    On Imprimitive Representations of Finite Reductive Groups in Non-defining Characteristic

    Full text link
    In this paper, we begin with the classification of Harish-Chandra imprimitive representations in non-defining characteristic. We recall the connection of this problem to certain generalizations of Iwahori-Hecke algebras and show that Harish-Chandra induction is compatible with the Morita equivalence by Bonnaf\'{e} and Rouquier, thus reducing the classification problem to quasi-isolated blocks. Afterwards, we consider imprimitivity of unipotent representations of certain classical groups. In the case of general linear and unitary groups, our reduction methods then lead to results for arbitrary Lusztig series

    Comparison of techniques used to count single-celled viable phytoplankton

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Applied Phycology 24 (2012): 751-758, doi:10.1007/s10811-011-9694-z.Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry (FlowCAM). Counting methods were all able to estimate the cell concentrations, categorize cells into size classes, and determine cell viability using fluorescent probes. These criteria are essential to determine whether discharged ballast water complies with international standards that limit the concentration of viable planktonic organisms based on size class. Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton. All count methods used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells. With the exception of one sample, the methods generated live and non-viable cell counts that were significantly different from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all methods. Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60% were observed). Since all four methods were generally appropriate for monitoring discharged ballast water, ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for choosing the optimal phytoplankton counting method.This study was supported by the U.S. Coast Guard Research and Development Center under contract HSCG32-07- X-R00018. Partial research support to DMA and DMK was provided through NSF International Contract 03/06/394, and Environmental Protection Agency Grant RD-83382801-0

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation
    • 

    corecore