2,729 research outputs found

    Josephson effect in mesoscopic graphene strips with finite width

    Full text link
    We study Josephson effect in a ballistic graphene strip of length LL smaller than the superconducting coherence length and arbitrary width WW. We find that the dependence of the critical supercurrent IcI_{c} on WW is drastically different for different types of the edges. For \textit{smooth} and \textit{armchair} edges at low concentration of the carriers IcI_{c} decreases monotonically with decreasing W/LW/L and tends to a constant minimum for a narrow strip W/L1W/L\lesssim1. The minimum supercurrent is zero for smooth edges but has a finite value eΔ0/e\Delta_{0}/\hbar for the armchair edges. At higher concentration of the carriers, in addition to this overall monotonic variation, the critical current undergoes a series of peaks with varying WW. On the other hand in a strip with \textit{zigzag} edges the supercurrent is half-integer quantized to (n+1/2)4eΔ0/(n+1/2)4e\Delta_{0}/\hbar, showing a step-wise variation with WW.Comment: 4 pages, 3 figure

    Electron-electron interactions in antidot-based Aharonov-Bohm interferometers

    Full text link
    We present a microscopic picture of quantum transport in quantum antidots in the quantum Hall regime taking electron interactions into account. We discuss the edge state structure, energy level evolution, charge quantization and linear-response conductance as the magnetic field or gate voltage is varied. Particular attention is given to the conductance oscillations due to Aharonov-Bohm interference and their unexpected periodicity. To explain the latter we propose the mechanisms of scattering by point defects and Coulomb blockade tunneling. They are supported by self-consistent calculations in the Hartree approximation, which indicate pinning and correlation of the single-particle states at the Fermi energy as well as charge oscillation when antidot-bound states depopulate. We have also found interesting phenomena of anti-resonance reflection of the Fano type.Comment: 12 pages, 8 figure

    Management risks improvement as a key for the crisis overcoming

    Get PDF

    Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction

    Get PDF
    We study dc-transport and magnetization dynamics in a junction of arbitrary transparency consisting of two spin-singlet superconducting leads connected via a single classical spin precessing at the frequency Ω\Omega. The presence of the spin in the junction provides different transmission amplitudes for spin-up and spin-down quasiparticles as well as a time-dependent spin-flip transmission term. For a phase biased junction, we show that a steady-state superconducting charge current flows through the junction and that an out-of-equilibrium circularly polarized spin current, of frequency Ω\Omega, is emitted in the leads. Detailed understanding of the charge and spin currents is obtained in the entire parameter range. In the adiabatic regime, Ω2Δ\hbar \Omega \ll 2\Delta where Δ\Delta is the superconducting gap, and for high transparencies of the junction, a strong suppression of the current takes place around \vp \approx 0 due to an abrupt change in the occupation of the Andreev bound-states. At higher values of the phase and/or precession frequency, extended (quasi-particle like) states compete with the bound-states in order to carry the current. Well below the superconducting transition, these results are shown to be weakly affected by the back-action of the spin current on the dynamics of the precessing spin. Indeed, we show that the Gilbert damping due to the quasi-particle spin current is strongly suppressed at low-temperatures, which goes along with a shift of the precession frequency due to the condensate. The results obtained may be of interest for on-going experiments in the field of molecular spintronics.Comment: 19 pages, 13 figures (v3) Minor modifications per referee's comments. No change in results. (v2) 2 authors added, 1 reference added (Ref. 25), no change in the text and result

    Management risks improvement as a key for the crisis overcoming

    Get PDF

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Topological confinement in bilayer graphene

    Full text link
    We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero-modes, their properties are defined by the unusual chiral BLG quasiparticles, from which they derive. The number of zero-mode branches is fixed by the topological vacuum charge of the insulating BLG state. We discuss how these chiral states can manifest experimentally, and emphasize their relevance for valleytronics.Comment: 4 pages, 3 figure

    Dynamical Coulomb Blockade and the Derivative Discontinuity of Time-Dependent Density Functional Theory

    Get PDF
    The role of the discontinuity of the exchange-correlation potential of density functional theory is studied in the context of electron transport and shown to be intimately related to Coulomb blockade. By following the time evolution of an interacting nanojunction attached to biased leads, we find that, instead of evolving to a steady state, the system reaches a dynamical state characterized by correlation-induced current oscillations. Our results establish a dynamical picture of Coulomb blockade manifesting itself as a periodic sequence of charging and discharging of the nanostructure.Comment: to appear in Physical Review Letter

    Josephson current noise above Tc in superconducting tunnel junctions

    Full text link
    Tunnel junction between two superconductors is considered in the vicinity of the critical temperature. Superconductive fluctuations above Tc give rise to the noise of the ac Josephson current although the current itself is zero in average. As a result of fluctuations, current noise spectrum is peaked at the Josephson frequency, which may be considered as precursor of superconductivity in the normal state. Temperature dependence and shape of the Josephson current noise resonance line is calculated for various junction configurations.Comment: 8 pages, 2 figure
    corecore