3,771 research outputs found

    Persistent Currents in Helical Structures

    Get PDF
    Recent discovery of mesoscopic electronic structures, in particular the carbon nanotubes, made necessary an investigation of what effect may helical symmetry of the conductor (metal or semiconductor) have on the persistent current oscillations. We investigate persistent currents in helical structures which are non-decaying in time, not requiring a voltage bias, dissipationless stationary flow of electrons in a normal-metallic or semiconducting cylinder or circular wire of mesoscopic dimension. In the presence of magnetic flux along the toroidal structure, helical symmetry couples circular and longitudinal currents to each other. Our calculations suggest that circular persistent currents in these structures have two components with periods Φ0\Phi_0 and Φ0/s\Phi_0/s (ss is an integer specific to any geometry). However, resultant circular persistent current oscillations have Φ0\Phi_0 period. \pacs{PACS:}PACS:73.23.-bComment: 4 pages, 2 figures. Submitted to PR

    Malliavin calculus for difference approximations of multidimensional diffusions: truncated local limit theorem

    Get PDF
    For a difference approximations of multidimensional diffusion, the truncated local limit theorem is proved. Under very mild conditions on the distribution of the difference terms, this theorem provides that the transition probabilities of these approximations, after truncation of some asymptotically negligible terms, possess a densities that converge uniformly to the transition probability density for the limiting diffusion and satisfy a uniform diffusion-type estimates. The proof is based on the new version of the Malliavin calculus for the product of finite family of measures, that may contain non-trivial singular components. An applications for uniform estimates for mixing and convergence rates for difference approximations to SDE's and for convergence of difference approximations for local times of multidimensional diffusions are given.Comment: 34 page

    Josephson effect in ballistic graphene

    Get PDF
    We solve the Dirac-Bogoliubov-De-Gennes equation in an impurity-free superconductor-normal-superconductor (SNS) junction, to determine the maximal supercurrent that can flow through an undoped strip of graphene with heavily doped superconducting electrodes. The result is determined by the superconducting gap and by the aspect ratio of the junction (length L, small relative to the width W and to the superconducting coherence length). Moving away from the Dirac point of zero doping, we recover the usual ballistic result in which the Fermi wave length takes over from L. The product of critical current and normal-state resistance retains its universal value (up to a numerical prefactor) on approaching the Dirac point.Comment: 4 pages, 2 figure

    Supercurrent-phase relationship of a Nb/InAs(2DES)/Nb Josephson junction in overlapping geometry

    Full text link
    Superconductor/normal conductor/superconductor (SNS) Josephson junctions with highly transparent interfaces are predicted to show significant deviations from sinusoidal supercurrent-phase relationships (CPR) at low temperatures. We investigate experimentally the CPR of a ballistic Nb/InAs(2DES)/Nb junction in the temperature range from 1.3 K to 9 K using a modified Rifkin-Deaver method. The CPR is obtained from the inductance of the phase-biased junction. Transport measurements complement the investigation. At low temperatures, substantial deviations of the CPR from conventional tunnel-junction behavior have been observed. A theoretical model yielding good agreement to the data is presented.Comment: RevTex4, 4 pages including 3 figure
    corecore