56 research outputs found
Structural and magnetic properties of the (001) and (111) surfaces of the half-metal NiMnSb
Using the full potential linearised augmented planewave method we study the
electronic and magnetic properties of the (001) and (111) surfaces of the
half-metallic Heusler alloy NiMnSb from first-principles. We take into account
all possible surface terminations including relaxations of these surfaces.
Special attention is paid to the spin-polarization at the Fermi level which
governs the spin-injection from such a metal into a semiconductor. In general,
these surfaces lose the half-metallic character of the bulk NiMnSb, but for the
(111) surfaces this loss is more pronounced. Although structural optimization
does not change these features qualitatively, specifically for the (111)
surfaces relaxations can compensate much of the spin-polarization at the Fermi
surface that has been lost upon formation of the surface.Comment: 18 pages, 8 figure
Bulk-sensitive Photoemission of Mn5Si3
We have carried out a bulk-sensitive high-resolution photoemission experiment
on Mn5Si3. The measurements are performed for both core level and valence band
states. The Mn core level spectra are deconvoluted into two components
corresponding to different crystallographic sites. The asymmetry of each
component is of noticeable magnitude. In contrast, the Si 2p spectrum shows a
simple Lorentzian shape with low asymmetry. The peaks of the valence band
spectrum correspond well to the peak positions predicted by the former band
calculation.Comment: To be published in: Solid State Communication
Thermal and Dynamical Properties of the Two-band Hubbard Model Compared with FeSi
We study the two-band Hubbard model introduced by Fu and Doniach as a model
for FeSi which is suggested to be a Kondo insulator. Using the self-consistent
second-order perturbation theory combined with the local approximation which
becomes exact in the limit of infinite dimensions, we calculate the specific
heat, the spin susceptibility and the dynamical conductivity and point out that
the reduction of the energy gap due to correlation is not significant in
contrast to the previous calculation. It is also demonstrated that the gap at
low temperatures in the optical conductivity is filled up at a rather low
temperature than the gap size, which is consistent with the experiment.Comment: 6 pages, LaTeX, 7 PS figures included, uses RevTe
Appearance of Half-Metallicity in the Quaternary Heusler Alloys
I report systematic first-principle calculations of the quaternary Heusler
alloys like Co[CrMn]Al, CoMn[AlSn] and
[FeCo]MnAl. I show that when the two limiting cases (x=0 or 1)
correspond to a half-metallic compound, so do the intermediate cases. Moreover
the total spin moment in scales linearly with the total number of
valence electrons (and thus with the concentration ) following the
relation , independently of the origin of the extra valence
electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys.
Finally I discuss in all cases the trends in the atomic projected DOSs and in
the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table
Correlation Effects on Optical Conductivity of FeSi
Effects of electron correlation in FeSi are studied in terms of the two-band
Hubbard model with the density of states obtained from the band calculation.
Using the self-consistent second-order perturbation theory combined with the
local approximation, the correlation effects are investigated on the density of
states and the optical conductivity spectrum, which are found to reproduce the
experiments done by Damascelli et al. semiquantitatively. It is also found that
the peak at the gap edge shifts to lower energy region by correlation effects,
as is seen in the experiments.Comment: 4 pages, 3 figure
Electronic structure and magnetism of Mn doped GaN
Mn doped semiconductors are extremely interesting systems due to their novel
magnetic properties suitable for the spintronics applications. It has been
shown recently by both theory and experiment that Mn doped GaN systems have a
very high Curie temperature compared to that of Mn doped GaAs systems. To
understand the electronic and magnetic properties, we have studied Mn doped GaN
system in detail by a first principles plane wave method. We show here the
effect of varying Mn concentration on the electronic and magnetic properties.
For dilute Mn concentration, states of Mn form an impurity band completely
separated from the valence band states of the host GaN. This is in contrast to
the Mn doped GaAs system where Mn states in the gap lie very close to the
valence band edge and hybridizes strongly with the delocalized valence band
states.
To study the effects of electron correlation, LSDA+U calculations have been
performed.
Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to
that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn
spins is not decreased substantially for large Mn-Mn separation. Also, the
exchange interactions are anisotropic in different crystallographic directions
due to the presence or absence of connectivity between Mn atoms through As
bonds.Comment: 6 figures, submitted to Phys. Rev.
Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As
We have studied the depth-dependent magnetic and structural properties of
as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron
reflectometry. In addition to increasing total magnetization, the annealing
process was observed to produce a significantly more homogeneous distribution
of the magnetization. This difference in the films is attributed to the
redistribution of Mn at interstitial sites during the annealing process. Also,
we have seen evidence of significant magnetization depletion at the surface of
both as-grown and annealed films.Comment: 5 pages, 3 figure
Transport, optical and electronic properties of the half metal CrO2
The electronic structure of CrO_2 is critically discussed in terms of the
relation of existing experimental data and well converged LSDA and GGA
calculations of the electronic structure and transport properties of this half
metal magnet, with a particular emphasis on optical properties. We find only
moderate manifestations of many body effects. Renormalization of the density of
states is not large and is in the typical for transition metals range. We find
substantial deviations from Drude behavior in the far-infrared optical
conductivity. These appear because of the unusually low energy of interband
optical transitions. The calculated mass renormalization is found to be rather
sensitive to the exchange-correlation functional used and varies from 10%
(LSDA) to 90% (GGA), using the latest specific heat data. We also find that
dressing of the electrons by spin fluctuations, because of their high energy,
renormalizes the interband optical transition at as high as 4 eV by about 20%.
Although we find no clear indications of strong correlations of the Hubbard
type, strong electron-magnon scattering related to the half metallic band
structure is present and this leads to a nontrivial temperature dependence of
the resistivity and some renormalization of the electron spectra.Comment: 9 Revtex 2 column pages, including 8 postscript figures. Two more
figures are included in the submission that are not embedded in the paper,
representing DOS and bandstructure of the paramagnetic CrO
On-site Coulomb interaction and the magnetism of (GaMn)N and (GaMn)As
We use the local density approximation (LDA) and LDA+U schemes to study the
magnetism of (GaMn)As and (GaMn)N for a number of Mn concentrations and varying
number of holes. We show that for both systems and both calculational schemes
the presence of holes is crucial for establishing ferromagnetism. For both
systems, the introduction of increases delocalization of the holes and,
simultaneously, decreases the p-d interaction. Since these two trends exert
opposite influences on the Mn-Mn exchange interaction the character of the
variation of the Curie temperature (T) cannot be predicted without direct
calculation. We show that the variation of T is different for two systems.
For low Mn concentrations we obtain the tendency to increasing T in the
case of (GaMn)N whereas an opposite tendency to decreasing T is obtained
for (GaMn)As. We reveal the origin of this difference by inspecting the
properties of the densities of states and holes for both systems. The main body
of calculations is performed within a supercell approach. The Curie
temperatures calculated within the coherent potential approximation to atomic
disorder are reported for comparison. Both approaches give similar qualitative
behavior. The results of calculations are related to the experimental data.Comment: to appear in Physical Review
- …