75 research outputs found

    Accretion-ejection morphology of the microquasar SS 433 resolved at sub-au scale

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordWe present the first optical observation of the microquasar SS 433 at sub-milliarcsecond (mas) scale obtained with the GRAVITY instrument on the Very Large Telescope interferometer (VLTI). The 3.5-h exposure reveals a rich K-band spectrum dominated by hydrogen Brγand He i lines, as well as (red-shifted)emission lines coming from the jets. The K-band-continuum-emitting region is dominated by a marginally resolved point source (<1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The jet line positions agree well with the ones expected from the jet kinematic model, an interpretation also supported by the consistent sign (i.e., negative/positive for the receding/approaching jet component) of the phase shifts observed in the lines. The significant visibility drop across the jet lines, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by less than 0.5 mas from the continuum source and resolved in the direction of propagation, with a typical size of 2 mas. The jet position angle of ~80° is consistent with the expected one at the observation date. Jet emission so close to the central binary system would suggest that line locking, if relevant to explain the amplitude and stability of the 0.26c jet velocity, operates on elements heavier than hydrogen. The Brγprofile is broad and double peaked. It is better resolved than the continuum and the change of the phase signal sign across the line on all baselines suggests an East-West-oriented geometry similar to the jet direction and supporting a (polar) disk wind origin.Centre National d’Etudes Spatiales (CNES)Programme National Hautes Energies (PNHE)Humboldt FoundationNAS

    Submilliarcsecond Optical Interferometry of the High-mass X-Ray Binary BP Cru with VLTI/GRAVITY

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this recordWe observe the high-mass X-ray binary (HMXB) BP Cru using interferometry in the near-infrared K band with VLTI/GRAVITY. Continuum visibilities are at most partially resolved, consistent with the predicted size of the hypergiant. Differential visibility amplitude () and phase () signatures are observed across the He i and BrÎł lines, the latter seen strongly in emission, unusual for the donor star's spectral type. For a baseline m, the differential phase rms corresponds to an astrometric precision of . We generalize expressions for image centroid displacements and variances in the marginally resolved limit of interferometry to spectrally resolved data, and use them to derive model-independent properties of the emission such as its asymmetry, extension, and strong wavelength dependence. We propose geometric models based on an extended and distorted wind and/or a high-density gas stream, which has long been predicted to be present in this system. The observations show that optical interferometry is now able to resolve HMXBs at the spatial scale where accretion takes place, and therefore to probe the effects of the gravitational and radiation fields of the compact object on its environment

    The wind and the magnetospheric accretion onto the T Tauri star S Coronae Australis at sub-Au resolution

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Aims. To investigate the inner regions of protoplanetary discs, we performed near-infrared interferometric observations of the classical T Tauri binary system S CrA. Methods. We present the first VLTI-GRAVITY high spectral resolution (R - 4000) observations of a classical T Tauri binary, S CrA (composed of S CrAN and S CrAS and separated by -10:04), combining the four 8m telescopes in dual-field mode. Results. Our observations in the near-infrared K-band continuum reveal a disc around each binary component, with similar halfflux radii of about 0.1 au at d - 130 pc, inclinations (i = 28 - 3-and i = 22 - 6-), and position angles (PA = 0- 6- and PA = -2-12-), suggesting that they formed from the fragmentation of a common disc. The S CrAN spectrum shows bright He i and Br line emission exhibiting inverse P Cygni profiles, typically associated with infalling gas. The continuum-compensated Br line visibilities of S CrAN show the presence of a compact Br emitting region whose radius is about -0.06 au, which is twice as big as the truncation radius. This component is mostly tracing a wind. Moreover, a slight radius change between the blue-And red-shifted Br line components is marginally detected. Conclusions. The presence of an inverse P Cygni profile in the He i and Br lines, along with the tentative detection of a slightly larger size of the blue-shifted Br line component, hint at the simultaneous presence of a wind and magnetospheric accretion in S CrA N.Science Foundation IrelandAlexander von Humboldt Foundation Fellowship ProgrammeFrench PNPSLabEx OSUG@202

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A∗ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈ 7650 km s-1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s-1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics

    Multiple star systems in the Orion nebula

    Get PDF
    This is the author accepted manuscript. The final fersion is available from EDP Sciences via the DOI in this record.This work presents an interferometric study of the massive-binary fraction in the Orion Trapezium cluster with the recently comissioned GRAVITY instrument. We observed a total of 16 stars of mainly OB spectral type. We find three previously unknown companions for ξ1 Ori B, ξ2 Ori B, and ξ2 Ori C. We determined a separation for the previously suspected companion of NU Ori. We confirm four companions for ξ1 Ori A, ξ1 Ori C, ξ1 Ori D, and ξ2 Ori A, all with substantially improved astrometry and photometric mass estimates. We refined the orbit of the eccentric high-mass binary ξ1 Ori C and we are able to derive a new orbit for ξ1 Ori D. We find a system mass of 21.7 M⊙ and a period of 53 days. Together with other previously detected companions seen in spectroscopy or direct imaging, eleven of the 16 high-mass stars are multiple systems. We obtain a total number of 22 companions with separations up to 600 AU. The companion fraction of the early B and O stars in our sample is about two, significantly higher than in earlier studies of mostly OB associations. The separation distribution hints toward a bimodality. Such a bimodality has been previously found in A stars, but rarely in OB binaries, which up to this point have been assumed to be mostly compact with a tail of wider companions. We also do not find a substantial population of equal-mass binaries. The observed distribution of mass ratios declines steeply with mass, and like the direct star counts, indicates that our companions follow a standard power law initial mass function. Again, this is in contrast to earlier findings of flat mass ratio distributions in OB associations. We excluded collision as a dominant formation mechanism but find no clear preference for core accretion or competitive accretion.Marie SkƂodowska-Curie Grant AgreementFCT-PortugalERC Starting Gran

    First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer

    Full text link

    Feed Forward Neural Network for Autofluorescence Imaging Classification

    No full text
    The key elements in cancer diagnostics are the early identification and estimation of the tumor growth and its spread in order to determine the area to be operated on. The aim of our study was to develop new methods of analyzing autofluorescence images which will allow us an objective and accurate assessment of the location of a tumor and will also be helpful in determining the advancement of the disease. The proposed classification methods are based on neural network algorithms. An Olympus company endoscopic system was used for an autofluorescence intestine imaging study. The autofluorescence imaging analysis process can be divided into several main stages. The first step is preparation of a training data set. The second one involves selection of feature space, namely the selection of those features which enable distinguishing the pathologically altered areas from the healthy ones. Final stages of the analysis include pathologically changed tissue classification and diagnosis
    • 

    corecore