56 research outputs found

    Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline Thin Films

    Get PDF
    We report the synthesis of colloidal Mn2+-doped ZnO (Mn2+:ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn2+:ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)2 was found to strongly inhibit oxidation of Mn2+ by O2, allowing the synthesis of Mn2+:ZnO to be performed aerobically. Mn2+ ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn2+:ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn2+ with very homogeneous speciation, differing from bulk Mn2+:ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 Bohr magneton/Mn2+ and TC > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn2+:ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.Comment: To be published in the Journal of the American Chemical Society Web on July 14, 2004 (http://dx.doi.org/10.1021/ja048427j

    Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping

    Get PDF
    We report the development of room-temperature ferromagnetism in chemically synthesized powder samples of Sn1−xFexO2 (0.005≤ x ≤0.05) and paramagnetic behavior in an identically synthesized set of Sn1−xFexO. The ferromagnetic Sn0.99Fe0.01O2 showed a Curie temperature TC=850 K, which is among the highest reported for transition-metal-doped semiconductor oxides. With increasing Fe doping, the lattice parameters of SnO2 decreased and the saturation magnetization increased, suggesting a strong structure-magnetic property relationship. When the Sn0.95Fe0.05O2 was prepared at different temperatures between 200 and 900 °C, systematic changes in the magnetic properties were observed. Combined Mössbauer spectroscopy and magnetometry measurements showed a ferromagnetic behavior in Sn0.95Fe0.05O2 samples prepared at and above 350°C, but the ferromagnetic component decreased gradually as preparation temperature approached 600 °C. All Sn0.95Fe0.05O2 samples prepared above 600 °C were paramagnetic. X-ray photoelectron spectroscopy, magnetometry, and particle induced x-ray emission studies showed that the Fe dopants diffuse towards the surface of the particles in samples prepared at higher temperatures, gradually destroying the ferromagnetism. Mössbauer studies showed that the magnetically ordered Fe3+ spins observed in the Sn0.95Fe0.05O2 sample prepared at 350 °C is only ~24% of the uniformly incorporated Fe3+. No evidence of any iron oxide impurity phases were detected in Sn1−xFexO2 or Sn1−xFexO, suggesting that the emerging magnetic interactions in these systems are most likely related to the properties of the host systems SnO2 and SnO, and their oxygen stoichiometry

    The impact of the third O-2 addition reaction network on ignition delay times of neo-pentane

    Get PDF
    We studied the oxidation of neo-pentane by combining experiments, theoretical calculations, and mechanistic developments to elucidate the impact of the 3rd O 2 addition reaction network on ignition delay time predictions. The experiments are based on photoionization mass spectrometry in jet-stirred and time-resolved flow reactors allowing for sensitive detection of the keto-hydroperoxide (KHP) and keto-dihydroperoxide (KDHP) intermediates. With neo-pentane exhibiting a unique symmetric molecular structure, which consequently results only in single KHP and KDHP isomers, theoretical calculations of ionization and fragment appearance energies and of absolute photoionization cross sections enabled the unambiguous identification and quantification of the KHP intermediate. Its temperature and time-resolved profiles together with calculated and experimentally observed KHP-to-KDHP signal ratios were compared to simulation results based on a newly developed mechanism that describes the 3rd O-2 addition reaction network. A satisfactory agreement has been observed between the experimental data points and the simulation results, thus adding confidence to the model's overall performance. Finally, this mechanism was used to predict ignition delay times reported previously in shock tube and rapid compression machine experiments (J. Bugler et al., Combust. Flame 163 (2016) 138-156). While the model accurately reproduces the experimental data, simulations with and without the 3rd O-2 addition reaction network included reveal only a negligible effect on the predicted ignition delay times at 10 and 20 atm. According to model calculations, low temperatures and high pressures promote the importance of the 3rd O-2 addition reactions. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Uranium Extraction From Laboratory-Synthesized, Uranium-Doped Hydrous Ferric Oxides

    Get PDF
    The extractability of uranium (U) from synthetic uranium-hydrous ferric oxide (HFO) coprecipitates has been shown to decrease as a function of mineral ripening, consistent with the hypothesis that the ripening process will decrease uranium lability. To evaluate this process, three HFO suspensions were coprecipitated with uranyl (UO22+) and maintained at pH 7.0 ± 0.1. Uranyl was added to the HFO post-precipitation in a fourth suspension. Two suspensions also contained either coprecipitated silicate(Si-U-HFO) or phosphate (P-U-HFO).After precipitation of the HFOs, at time intervals of 1 week, 1 month, 6 months, 1 year, and 2 years, aliquots of each suspension were contacted with five extractant solutions for a range of time. Uranium was preferentially extracted over Fe in varying degrees from all coprecipitates, by all extractants. The preference was dependent on the duration of mineral ripening and adjunct anion. Micro-X-ray diffraction analysis provides evidence for the transformation from amorphous material to phases containing substantial proportions of crystalline goethite and hematite, except the P-U-HFO, which remained primarily amorphous. Analysis of the U-HFO coprecipitate by the Mössbauer technique and scanning electron microscopy provides confirmation of an increase in particle size and evidence of mineral ripening to crystalline phases

    Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB)

    Get PDF
    Dissimilatory metal reducing bacteria (DMRB) catalyze the reduction of Fe(III) to Fe(II) in anoxic soils, sediments, and groundwater. Two-line ferrihydrite is a bioavailable Fe(III) oxide form that is exploited by DMRB as a terminal electron acceptor. A wide variety of biomineralization products result from the interaction of DMRB with 2-line ferrihydrite. Here we describe the state of knowledge on the biotransformation of synthetic 2-line ferrihydrite by laboratory cultures of DMRB using select published data and new experimental results. A facultative DMRB is emphasized (Shewanella putrefaciens) upon which most of this work has been performed. Key factors controlling the identity of the secondary mineral suite are evaluated including medium composition, electron donor and acceptor concentrations, ferrihydrite aging/recrystallization status, sorbed ions, and co-associated crystalline Fe(III) oxides. It is shown that crystalline ferric (goethite, hematite, lepidocrocite), ferrous (siderite, vivianite), and mixed valence (magnetite, green rust) iron solids are formed in anoxic, circumneutral DMRB incubations. Some products are well rationalized based on thermodynamic considerations, but others appear to result from kinetic pathways driven by ions that inhibit interfacial electron transfer or the precipitation of select phases. The primary factor controlling the nature of the secondary mineral suite appears to be the Fe(II) supply rate and magnitude, and its surface reaction with the residual oxide and other sorbed ions. The common observation of end-product mineral mixtures that are not at global equilibrium indicates that microenvironments surrounding respiring DMRB cells or the reaction-path trajectory (over Eh-pH space) may influence the identity of the final biomineralization suite

    Biotransformation of Ni-Substituted Hydrous Ferric Oxide by an Fe(III)-Reducing Bacterium

    Get PDF
    The reductive biotransformation of a Ni2+-substituted (5 mol %) hydrous ferric oxide (NiHFO) by Shewanella putrefaciens, strain CN32, was investigated under anoxic conditions at circumneutral pH. Our objectives were to define the influence of Ni2+ substitution on the bioreducibility of the HFO and the biomineralization products formed and to identify biogeochemical factors controlling the phase distribution of Ni2+ during bioreduction. Incubations with CN32 and NiHFO were sampled after 14 and 32 d, and both aqueous chemistry and solid phases were characterized. By comparison of these results with a previous study (Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H.; Onstott, T. C.; Hinman, N. W.; Li, S. W. Geochim. Cosmochim. Acta 1998, 62, 3239-3257), it was concluded that coprecipitated/sorbed Ni2+ inhibited the bioreduction of HFO through an undefined chemical mechanism.Mössbauer spectroscopy allowed analysis of the residual HFO phase and the identity and approximate mass percent of biogenic mineral phases. The presence of AQDS, a soluble electron shuttle that obviates need for cell-oxide contact, was found to counteract the inhibiting effect of Ni2+. Nickel was generally mobilized during bioreduction in a trend that correlated with final pH, except in cases where PO43- was present and vivianite precipitation occurred. CN32 promoted the formation of Ni2+-substituted magnetite (Fe2IIIFeII(1-x) NiIIxO4) in media with AQDS but without PO43-. The formation of this biogenic coprecipitate, however, had little discernible impact on final aqueous Ni2+ concentrations. These results demonstrate that coprecipitated Ni can inhibit dissimilatory microbial reduction of amorphous iron oxide, but the presence of humic acids may facilitate the immobilization of Ni within the crystal structure of biogenic magnetite
    • …
    corecore