8 research outputs found

    A Role of Aromatase in Sjögren Syndrome

    Get PDF
    Several autoimmune diseases are known to develop in postmenopausal women. However, the mechanism by which estrogen deficiency influences autoimmunity is unknown. Aromatase is a converting enzyme from androgens to estrogens. In the present study, we used female aromatase gene knockout (ArKO) mice as a model of estrogen deficiency to investigate the molecular mechanism that underlies the onset and development of autoimmunity. Histological analyses showed that inflammatory lesions in the lacrimal and salivary glands of ArKO mice increased with age. Adoptive transfer of spleen cells or bone marrow cells from ArKO mice into recombination activating gene 2 knockout mice failed to induce the autoimmune lesions. Expression of mRNA encoding proinflammatory cytokines and monocyte chemotactic protein-1 (MCP-1) increased in white adipose tissue (WAT) of ArKO mice and was significantly higher than that in wild-type mice. Moreover, an increased number of inflammatory M-1 macrophage was observed in WAT of ArKO mice. A significantly increased MCP-1 mRNA expression of the salivary gland tissue in ArKO was found together with adiposity. Furthermore, the autoimmune lesions in a murine model of Sjögren’s syndrome (SS) were exacerbated by administration of an aromatase inhibitor. These results suggest that aromatase may play in a key role in the pathogenesis of SS-like lesions by controlling the target organ and adipose tissue-associated macrophage

    Cross-talk between autoimmunity and tumor immunity

    Get PDF
    Both autoimmunity and tumor immunity are immune responses against self-tissues or cells. However, the precise similarity or difference between them remains unclear. In this study, to understand a novel mechanism of tumor immunity, we performed transplantation experiments with a murine autoimmune model, C57BL/6J (B6)/lpr mice. A melanoma cell line, B16F10 cells, or granulocyte macrophage colony-stimulating factor- overexpressing B16F10 (B16F10/mGM) cells were transplanted into B6 or B6/lpr mice. Tumor growth by transplanted B16F10/mGM cells was significantly accelerated in B6/lpr mice compared with that in B6 mice. The accumulation of M1 macrophages in the tumor tissues of B6/lpr recipient mice was significantly lower compared with that in the control mice. In vitro co-culture experiment showed that impaired differentiation into M1 macrophages was observed in B6/lpr mice. The number of tumor vessels and vascular endothelial growth factor (VEGF) expression were also significantly enhanced in the tumor tissues of B6/lpr mice compared with those in the B6 mice. Moreover, VEGF expression was correlated with the increased expression of hypoxia-inducible factor-1α in the tumor tissues of B6/lpr mice. These results suggest that dysfunctional tumor immunity and enhanced angiogenesis in autoimmunity influence tumor growth

    Odontogenic stem cells

    Get PDF
    Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of the Hertwig’s epithelial root sheath (HERS) that are involved in the formation of tooth roots. ERM cells are unique epithelial cells that remain in periodontal tissues throughout adult life. They have a functional role in the repair/regeneration of cement or enamel. Here, we isolated odontogenic epithelial cells from ERM in the periodontal ligament, and the cells were spontaneously immortalized. Immortalized odontogenic epithelial (iOdE) cells had the ability to form spheroids and expressed stem cell-related genes. Interestingly, iOdE cells underwent osteogenic differentiation, as demonstrated by the mineralization activity in vitro in mineralization-inducing media and formation of calcification foci in iOdE cells transplanted into immunocompromised mice. These findings suggest that a cell population with features similar to stem cells exists in ERM and that this cell population has a differentiation capacity for producing calcifications in a particular microenvironment. In summary, iOdE cells will provide a convenient cell source for tissue engineering and experimental models to investigate tooth growth, differentiation, and tumorigenesis

    EWSR1-ATF1融合遺伝子を持つ歯原性明細胞癌細胞株の樹立と性状解析

    Get PDF
    Objective: Clear cell odontogenic carcinoma (CCOC) is a rare malignant odontogenic tumor (MOT) characterized by sheets and lobules of vacuolated and clear cells. To understand the biology of CCOC, we established a new cell line, CCOC-T, with EWSR1-ATF1 fusion gene from a mandible tumor with distant metastasis and characterized this cell line. Materials and methods: To detect the EWSR1-ATF1 fusion gene, we used three CCOC cases, including the present case, by RT-PCR and FISH analysis. We characterized established CCOC-T cells by checking cell growth, invasion and the expression of odontogenic factors and bone-related factors. Moreover, the gene expression profile of CCOC-T cells was examined by microarray analysis. Results: Histologically, the primary tumor was comprised of cords and nests containing clear and squamoid cells separated by fibrous septa. In addition, ameloblastomatous islands with palisaded peripheral cells were observed, indicating probable odontogenic origin. This tumor expressed the fusion gene EWSR1-ATF1, which underlies the etiology of hyalinizing clear cell carcinoma (HCCC) and potentially that of CCOC. We found a breakpoint in the EWSR1-ATF1 fusion to be the same as that reported in HCCC. Established CCOC-T cells grew extremely slowly, but the cells showed highly invasive activity. Moreover, CCOC-T cells expressed bone-related molecules, odontogenic factors, and epithelial mesenchymal transition (EMT)-related molecules. Conclusion: To the best of our knowledge, this is the first report on the establishment of a CCOC cell line. CCOC-T cells serve as a useful in vitro model for understanding the pathogenesis and nature of MOT
    corecore