843 research outputs found
Synthesis of spirocyclic enones by rhodium-catalyzed dearomatizing oxidative annulation of 2-alkenylphenols with alkynes and enynes
The dearomatizing oxidative annulation of 2-alkenylphenols with alkynes and enynes proceeds with high yields and regioselectivities under Rh(III) catalysis. These reactions are successful using Cu(OAc)2 or air as the stoichiometric oxidant, and provide spirocyclic enones, the basic ring system of which appears in several natural products. Application of this process to the preparation of a highly functionalized tetracycle is also demonstrated
Revisiting wetting, freezing, and evaporation mechanisms of water on copper
Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model
Pair condensation in the BCS-BEC crossover of ultracold atoms loaded onto a 2D square lattice
We investigate the crossover from the Bardeen-Cooper-Schrieffer (BCS) state
of weakly-bound Cooper pairs to the Bose-Einstein Condensate (BEC) of
strongly-bound molecular dimers in a gas of ultracold atoms loaded on a
two-dimensional optical lattice. By using the the mean-field BCS equations of
the emerging Hubbard model and the concept of off-diagonal-long-range-order for
fermions we calculate analytically and numerically the pair binding energy, the
energy gap and the condensate fraction of Cooper pairs as a function of
interaction strength and filling fractor of atoms in the lattice at zero
temperature.Comment: 7 pages, 5 figures, to be published in Phys. Rev.
Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology
Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5 mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S ratio and favour methanogenic activity in anaerobic treatments. The average methane potential of the food waste was 421 +/- 15 mL CH4 g(-1) VS, achieving 73% anaerobic biodegradability. The anaerobic co-digestion of food waste with WW is expected to increase methane production 2.9-fold. The settleable solids tests and the particle size distribution analyses confirmed that both treatment lines of a conventional WWTP (water and sludge lines) would be clearly impacted,by the incorporation of food waste into its influent. Anaerobic processes are therefore preferred over their aerobic counterparts due to their ability to valorise the high COD content to produce biogas (a renewable energy) instead of increasing the energetic costs associated with the aeration process for aerobic COD oxidation. (C) 2016 Elsevier Ltd. All rights reserved.This research work was possible thanks to financial support from the Generalitat Valenciana (project PROMETEO/2012/029) which is gratefully acknowledged.Moñino Amorós, P.; Jiménez Douglas, E.; Barat Baviera, R.; Aguado García, D.; Seco Torrecillas, A.; Ferrer, J. (2016). Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Management. 56:158-165. https://doi.org/10.1016/j.wasman.2016.07.021S1581655
Additive effects of the dopamine D2 receptor and dopamine transporter genes on the error-related negativity in young children
The error-related negativity (ERN) is a negative deflection in the event-related potential that occurs approximately 50ms following the commission of an error at fronto-central electrode sites. Previous models suggest dopamine plays a role in the generation of the ERN. We recorded event-related potentials (ERPs) while 279 children aged 5-7 years completed a simple Go/No-Go task; the ERN was examined in relation to the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes. Results suggest an additive effect of the DRD2 and DAT1 genotype on ERN magnitude such that children with at least one DRD2 A1 allele and children with at least one DAT1 9 allele have an increased (i.e. more negative) ERN. These results provide further support for the involvement of dopamine in the generation of the ERN. © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society
Corrections by melatonin of liver mitochondrial disorders under diabetes and acute intoxication in rats
The aim of the present work was to investigate the mechanisms of oxidative damage of the liver mitochondria under diabetes and intoxication in rats as well as to evaluate the possibility of corrections of mitochondrial disorders by pharmacological doses of melatonin. The experimental (30 days) streptozotocin-induced diabetes mellitus caused a significant damage of the respiratory activity in rat liver mitochondria. In the case of succinate as a respiratory substrate, the ADP-stimulated respiration rate V3 considerably decreased (by 25%, p<0-05) as well as the acceptor control ratio (ACR) V3/V2 markedly diminished (by 25%, /p<0-01). We observed a decrease of the ADP-stimulated respiration rate V3 by 35% (p<0-05), with glutamate as substrate. In this case, ACR also decreased (by 20%, p<0-05). Surprisingly, the phosphorylation coefficient ADP/O did not change under diabetic liver damage. Acute rat carbon tetrachloride-induced intoxication resulted in considerable decrease of the phosphorylation coefficient because of uncoupling of the oxidation and phosphorylation processes in the liver mitochondria. The melatonin administration during diabetes (10mg - kg-1 body weight, 30days, daily) showed a considerable protective effect on the liver mitochondrial function, reversing the decreased respiration rate V3 and the diminished ACR to the control values both for succinate-dependent respiration and for glutamate-dependent respiration. The melatonin administration to intoxicated animals (10mg - kg-1 body weight, three times) partially increased the rate of succinate-dependent respiration coupled with phosphorylation. The impairment of mitochondrial respiratory plays a key role in the development of liver injury under diabetes and intoxication. Melatonin might be considered as an effector that regulates the mitochondrial function under diabetes. Copyright © 2011 John Wiley & Sons, Ltd
- …