54 research outputs found

    Narrow band imaging for the detection of gastric intestinal metaplasia and dysplasia during surveillance endoscopy

    Get PDF
    Background: Surveillance of premalignant gastric lesions relies mainly on random biopsy sampling. Narrow band imaging (NBI) may enhance the accuracy of endoscopic surveillance of intestinal metaplasia (IM) and dysplasia. We aimed to compare the yield of NBI to white light endoscopy (WLE) in the surveillance of patients with IM and dysplasia. Methods: Patients with previously identified gastric IM or dysplasia underwent a surveillance endoscopy. Both WLE and NBI were performed in all patients during a single procedure. The sensitivity of WLE and NBI for the detection of premalignant lesions was calculated by correlating endoscopic findings to histological diagnosis. Results: Forty-three patients (28 males and 15 females, mean age 59 years) were included. IM was diagnosed in 27 patients; 20 were detected by NBI and WLE, four solely by NBI and three by random biopsies only. Dysplasia was detected in seven patients by WLE and NBI and in two patients by random biopsies only. Sixty-eight endoscopically detected lesions contained IM: 47 were detected by WLE and NBI, 21 by NBI only. Nine endoscopically detected lesions demonstrated dysplasia: eight were detected by WLE and NBI, one was detected by NBI only. The sensitivity, specificity, positive and negative predictive values for detection of premalignant lesions were 71, 58, 65 and 65% for NBI and 51, 67, 62 and 55% for WLE, respectively. Conclusions: NBI increases the diagnostic yield for detection of advanced premalignant gastric lesions compared to routine WLE

    Genome-Wide Identification of Ampicillin Resistance Determinants in Enterococcus faecium

    Get PDF
    Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism

    C1q binding to surface-bound IgG is stabilized by C1r(2)s(2) proteases

    Get PDF
    Complement is an important effector mechanism for antibodymediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2. In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.Transplantation and autoimmunit

    Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    Get PDF
    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein
    corecore