298 research outputs found
Brand and generic use of inhalation medication and frequency of switching in children and adults : a population-based cohort study
BACKGROUND: The expiration of patents of brand inhalation medications and the ongoing pressure on healthcare budgets resulted in a growing market for generics.
AIM: To study the use of brand and generic inhalation medication and the frequency of switching between brand and generic and between devices. In addition, we investigated whether switching affected adherence.
METHODS: From dispensing data from the Dutch PHARMO Database Network a cohort aged ≥ 5 years, using ≥ 1 year of inhalation medication between 2003 and 2012 was selected. Switching was defined as changing from brand to generic or vice versa. In addition, we studied change in aerosol delivery device type (e.g., DPI, pMDI, and nebulizers). Adherence was calculated using the medication possession ratio (MPR).
RESULTS: The total cohort comprised 70,053 patients with 1,604,488 dispensations. Per calendar year, 5% switched between brand and generic inhalation medication and 5% switched between devices. Median MPRs over the first 12 months ranged between 33 and 55%. Median MPR over the total period was lower after switch from brand to generic and vice versa for formoterol (44.5 vs. 42.1 and 63.5 vs. 53.8) and beclomethasone (93.8 vs. 59.8 and 81.3 vs. 55.9).
CONCLUSION: Per year, switching between brand and generic inhalation medication was limited to 5% of the patients, switching between device types was observed in 5% as well. Adherence to both generic and brand inhalation medication was low. Effect of switching on adherence was contradictory; depending on time period, medication and type, and direction of switching. Further research on reasons for switching and potential impact on clinical outcomes is warranted
Renal hypoperfusion and impaired endothelium-dependent vasodilation in an animal model of VILI: the role of the peroxynitrite-PARP pathway
Introduction: Mechanical ventilation (MV) can injure the lungs and contribute to an overwhelming inflammatory response, leading to acute renal failure (ARF). We previously showed that poly(adenosine diphosphate-ribose) polymerase (PARP) is involved in the development of ventilator-induced lung injury (VILI) and the related ARF, but the mechanisms underneath remain unclear. In the current study we therefore tested the hypothesis that renal blood flow and endothelial, functional and tissue changes in the kidney of rats with lipopolysaccharide (LPS)-induced lung injury aggravated by MV, is caused, in part, by activation of PARP by peroxynitrite.Methods: Anesthetized Sprague Dawley rats (n = 31), were subjected to intratracheal instillation of lipopolysaccharide at 10 mg/kg followed by 210 min of mechanical ventilation at either low tidal volume (6 mL/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (19 mL/kg) with zero positive end-expiratory pressure in the presence or absence of a peroxynitrite decomposition catalyst, WW85 or a PARP inhibitor, PJ-34. During the experiment, hemodynamics and blood gas variables were monitored. At time (t) t = 0 and t = 180 min, renal blood flow was measured. Blood and urine were collected for creatinine clearance measurement. Arcuate renal arteries were isolated for vasoreactivity experiment and kidneys snap frozen for staining.Results: High tidal volume ventilation resulted in lung injury, hypotension, renal hypoperfusion and impaired renal endothelium-dependent vasodilation, associated with renal dysfunction and tissue changes (leukocyte accumulation and increased expression of neutrophil gelatinase-associated lipocalin). Both WW85 and PJ-34 treatments attenuated lung injury, preserved blood pressure, attenuated renal endothelial dysfunction and maintained renal blood flow. In multivariable analysis, renal blood flow improvement was, independently from each other, associated with both maintained blood pressure and endothelium-dependent vasodilation by drug treatment. Finally, drug treatment improved renal function and reduced tissue changes.Conclusions: The peroxynitrite-induced PARP activation is involved in renal hypoperfusion, impaired endothelium-dependent vasodilation and resultant dysfunction, and injury, in a model of lung injury
How representative of a general type 2 diabetes population are patients included in cardiovascular outcome trials with SGLT2 inhibitors? A large European observational study
Aims: Enrollment criteria vary substantially among cardiovascular outcome trials (CVOTs) of sodium-glucose cotransporter-2 inhibitors (SGLT-2is), which impacts the relationship between a trial population and the general type 2 diabetes (T2D) population. The aim of this study was to evaluate the representativeness of four SGLT-2i CVOTs of a general T2D population. Methods: T2D patients from Germany, The Netherlands, Norway and Sweden were included in the study. Given the available data per country, key inclusion and exclusion criteria were defined by diagnoses, procedures and drug treatments to facilitate comparability among countries. Representativeness was determined by dividing the number of patients fulfilling the key enrolment criteria of each CVOT (CANVAS, DECLARE-TIMI 58, EMPA-REG OUTCOME, VERTIS-CV) by the total T2D population. Results: In 2015, a total T2D population of 803 836 patients was identified in Germany (n = 239 485), in The Netherlands (n = 36 213), in Norway (n = 149 782) and in Sweden (n = 378 356). These populations showed a 25% to 44% cardiovascular (CV) disease baseline prevalence and high CV-preventive drug use (>80%). The general T2D population had less prevalent CV disease and patients were slightly older than those included in the CVOTs. The DECLARE-TIMI 58 trial had the highest representativeness, 59% compared to the general T2D population, and this representativeness was almost 2-, 3- and 4-fold higher compared to the CANVAS (34%), EMPA-REG OUTCOME (21%) and VERTIS-CV (17%) trials, respectively. Conclusions: In large T2D populations within Europe, consistent patterns of representativeness of CVOTs were found when applying the main enrolment criteria. The DECLARE-TMI 58 trial had the highest representativeness, indicating that it included and examined patients who are most representative of the general T2D patients in the studied countries
A seismically induced onshore surge deposit at the KPg boundary, North Dakota
This work is licensed under a Creative Commons Attribution 4.0 International License.The most immediate effects of the terminal-Cretaceous Chicxulub impact, essential to understanding the global-scale environmental and biotic collapses that mark the Cretaceous–Paleogene extinction, are poorly resolved despite extensive previous work. Here, we help to resolve this by describing a rapidly emplaced, high-energy onshore surge deposit from the terrestrial Hell Creek Formation in Montana. Associated ejecta and a cap of iridium-rich impactite reveal that its emplacement coincided with the Chicxulub event. Acipenseriform fish, densely packed in the deposit, contain ejecta spherules in their gills and were buried by an inland-directed surge that inundated a deeply incised river channel before accretion of the fine-grained impactite. Although this deposit displays all of the physical characteristics of a tsunami runup, the timing (<1 hour postimpact) is instead consistent with the arrival of strong seismic waves from the magnitude Mw ∼10 to 11 earthquake generated by the Chicxulub impact, identifying a seismically coupled seiche inundation as the likely cause. Our findings present high-resolution chronology of the immediate aftereffects of the Chicxulub impact event in the Western Interior, and report an impact-triggered onshore mix of marine and terrestrial sedimentation—potentially a significant advancement for eventually resolving both the complex dynamics of debris ejection and the full nature and extent of biotic disruptions that took place in the first moments postimpact.Netherlands Organization for Scientific Research Grant 864.12.005United Kingdom Science and Technology Facilities Council (Grant STFC:ST/M001814/1
Brand and generic use of inhalation medication and frequency of switching in children and adults: A population-based cohort study
Background: The expiration of patents of brand inhalation medications and the ongoing pressure on healthcare budgets resulted in a growing market for generics. Aim: To study the use of brand and generic inhalation medication and the frequency of switching between brand and generic and between devices. In addition, we investigated whether switching affected adherence. Methods: From dispensing data from the Dutch PHARMO Database Network a cohort aged ≥ 5 years, using ≥ 1 year of inhalation medication between 2003 and 2012 was selected. Switching was defined as changing from brand to generic or vice versa. In addition, we studied change in aerosol delivery device type (e.g., DPI, pMDI, and nebulizers). Adherence was calculated using the medication possession ratio (MPR). Results: The total cohort comprised 70,053 patients with 1,604,488 dispensations. Per calendar year, 5% switched between brand and generic inhalation medication and 5% switched between devices. Median MPRs over the first 12 months ranged between 33 and 55%. Median MPR over the total period was lower after switch from brand to generic and vice versa for formoterol (44.5 vs. 42.1 and 63.5 vs. 53.8) and beclomethasone (93.8 vs. 59.8 and 81.3 vs. 55.9). Conclusion: Per year, switching between brand and generic inhalation medication was limited to 5% of the patients, switching between device types was observed in 5% as well. Adherence to both generic and brand inhalation medication was low. Effect of switching on adherence was contradictory; depending on time period, medication and type, and direction of switching. Further research on reasons for switching and potential impact on clinical outcomes is warranted
Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice
Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B–mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8−/− mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1−/− mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein–derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion
Can subtle changes in gene expression be consistently detected with different microarray platforms?
Background: The comparability of gene expression data generated with different microarray platforms is still a matter of concern. Here we address the performance and the overlap in the detection of differentially expressed genes for five different microarray platforms in a challenging biological context where differences in gene expression are few and subtle. Results: Gene expression profiles in the hippocampus of five wild-type and five transgenic δC-doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, Affymetrix, Agilent, Illumina, LGTC home-spotted arrays. Using a fixed false discovery rate of 10% we detected surprising differences between the number of differentially expressed genes per platform. Four genes were selected by ABI, 130 by Affymetrix, 3,051 by Agilent, 54 by Illumina, and 13 by LGTC. Two genes were found significantly differentially expressed by all platforms and the four genes identified by the ABI platform were found by at least three other platforms. Quantitative RT-PCR analysis confirmed 20 out of 28 of the genes detected by two or more platforms and 8 out of 15 of the genes detected by Agilent only. We observed improved correlations between platforms when ranking the genes based on the significance level than with a fixed statistical cut-off. We demonstrate significant overlap in the affected gene sets identified by the different platforms, although biological processes were represented by only partially overlapping sets of genes. Aberrances in GABA-ergic signalling in the transgenic mice were consistently found by all platforms. Conclusion: The different microarray platforms give partially complementary views on biological processes affected. Our data indicate that when analyzing samples with only subtle differences in gene expression the use of two different platforms might be more attractive than increasing the number of replicates. Commercial two-color platforms seem to have higher power for finding differentially expressed genes between groups with small differences in expression
- …