437 research outputs found

    Fertility in High-Income Countries: Trends, Patterns, Determinants, and Consequences

    Get PDF
    High-income countries have generally experienced falling fertility in recent decades. In most of these countries, the total fertility rate is now below the level that implies a stable population in the long run. This has led to concerns among economists, policymakers, and the wider public about the economic consequences of low fertility and population decline. In this contribution, we aim to i) describe the main determinants of low fertility in high-income countries, ii) assess its potential economic consequences, iii) discuss adjustment mechanisms for individuals and economies, iv) propose a simple economic framework to analyze the long-run economic impact of low fertility, and v) draw lessons for economic policymakers to react appropriately. While the economic challenges of low fertility are substantial, a thoughtful and consistent policy response can mitigate most of the adverse consequences

    Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble

    Full text link
    Kohärente Phononen können die Licht-Materie-Wechselwirkung in Halbleiter Nanostrukturen stark ändern. Bei einem Ensemble von Quantenpunkten (QP) als aktivem Lasermedium sind Phononen im Stande, die Laserintensität deutlich zu verstärken oder abzuschwächen. Die Physik des gekoppelten Phonon-Exziton-Licht-Systems wird von verschiedenen Mechanismen dominiert, die im Experiment nicht eindeutig unterschieden werden können, da die komplizierte Probenstruktur zu einem komplexen Verspannungspuls führt, der auf das QP-Ensemble trifft. Hier zeigen wir durch eine umfassende theoretische Studie, wie die Laseremission durch Phononpulse verschiedener Form und QP-Ensembles verschiedener spektraler Verteilung beeinflusst wird. Dies erlaubt einen Einblick in die grundlegenden Wechselspiele des gekoppelten Gesamtsystems. Dadurch können wir zwischen zwei Mechanismen unterschieden: der adiabatischen Verschiebung des Ensembles und dem Schüttel-Effekt. Dies ebnet den Weg zu einer gezielten Kontrolle der Laser Emission durch kohärente Phononen.Coherent phonons can greatly vary light–matter interaction in semiconductor nanostructures placed inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as active laser medium, phonons are able to induce a large enhancement or attenuation of the emission intensity, as has been recently demonstrated. The physics of this coupled phonon–exciton–light system consists of various effects, which in the experiment typically cannot be clearly separated, in particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by phonon pulses of various shapes as well as by ensembles with different spectral distributions of the QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon–exciton–light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission controlled by phonons.</p

    Polymer Shape Anisotropy and the Depletion Interaction

    Full text link
    We calculate the second and third virial coefficients of the effective sphere-sphere interaction due to polymer depletion. By utilizing the anisotropy of a typical polymer conformation, we can consider polymers that are roughly the same size as the spherical inclusions. We argue that recent experiments can confirm this anisotropy.Comment: 4 pages, 4 eps figures, RevTe

    Explicit Computation of Input Weights in Extreme Learning Machines

    Full text link
    We present a closed form expression for initializing the input weights in a multi-layer perceptron, which can be used as the first step in synthesis of an Extreme Learning Ma-chine. The expression is based on the standard function for a separating hyperplane as computed in multilayer perceptrons and linear Support Vector Machines; that is, as a linear combination of input data samples. In the absence of supervised training for the input weights, random linear combinations of training data samples are used to project the input data to a higher dimensional hidden layer. The hidden layer weights are solved in the standard ELM fashion by computing the pseudoinverse of the hidden layer outputs and multiplying by the desired output values. All weights for this method can be computed in a single pass, and the resulting networks are more accurate and more consistent on some standard problems than regular ELM networks of the same size.Comment: In submission for the ELM 2014 Conferenc

    Macro-level efficiency of health expenditure: Estimates for 15 major economies

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic highlights the importance of strong and resilient health systems. Yet how much a society should spend on healthcare is difficult to determine because additional health expenditures imply lower expenditures on other types of consumption. Furthermore, the welfare-maximizing (“efficient”) aggregate amount and composition of health expenditures depend on efficiency concepts at three levels that often get blurred in the debate. While the understanding of efficiency is good at the micro- and meso-levels—that is, relating to minimal spending for a given bundle of treatments and to the optimal mix of different treatments, respectively—this understanding rarely links to the efficiency of aggregate health expenditure at the macroeconomic level. While micro- and meso-efficiency are necessary for macro-efficiency, they are not sufficient. We propose a novel framework of a macro-efficiency score to assess welfare-maximizing aggregate health expenditure. This allows us to assess the extent to which selected major economies underspend or overspend on health relative to their gross domestic products per capita. We find that all economies under consideration underspend on healthcare with the exception of the United States. Underspending is particularly severe in China, India, and the Russian Federation. Our study emphasizes that the major and urgent issue in many countries is underspending on health at the macroeconomic level, rather than containing costs at the microeconomic level

    Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates

    Get PDF
    Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a series of complex eclipses in May 2007, interpreted as the transit of a giant Hill sphere filling debris ring system around a secondary companion, J1407b. No other eclipses have since been detected, although other measurements have constrained but not uniquely determined the orbital period of J1407b. Finding another eclipse towards J1407 will help determine the orbital period of the system, the geometry of the proposed ring system and enable planning of further observations to characterize the material within these putative rings. Aims. We carry out a search for other eclipses in photometric data of J1407 with the aim of constraining the orbital period of J1407b. Methods. We present photometry from archival photographic plates from the Harvard DASCH survey, and Bamberg and Sonneberg Observatories, in order to place additional constraints on the orbital period of J1407b by searching for other dimming and eclipse events. Using a visual inspection of all 387 plates and a period-folding algorithm we performed a search for other eclipses in these data sets. Results. We find no other deep eclipses in the data spanning from 1890 to 1990, nor in recent time-series photometry from 2012-2018. Conclusions. We rule out a large fraction of putative orbital periods for J1407b from 5 to 20 years. These limits are still marginally consistent with a large Hill sphere filling ring system surrounding a brown dwarf companion in a bound elliptical orbit about J1407. Issues with the stability of any rings combined with the lack of detection of another eclipse, suggests that J1407b may not be bound to J1407.Comment: 8 pages, 3 tables, 4 figures, accepted for publication in A&A. LaTeX files of the paper, scripts for the figures, and a minimal working FPA can be found under https://github.com/robinmentel/Constraining-Period

    Climate and the spread of COVID-19

    Get PDF
    Visual inspection of world maps shows that coronavirus disease 2019 (COVID-19) is less prevalent in countries closer to the equator, where heat and humidity tend to be higher. Scientists disagree how to interpret this observation because the relationship between COVID-19 and climatic conditions may be confounded by many factors. We regress the logarithm of confirmed COVID-19 cases per million inhabitants in a country against the country's distance from the equator, controlling for key confounding factors: air travel, vehicle concentration, urbanization, COVID-19 testing intensity, cell phone usage, income, old-age dependency ratio, and health expenditure. A one-degree increase in absolute latitude is associated with a 4.3% increase in cases per million inhabitants as of January 9, 2021 (p value < 0.001). Our results imply that a country, which is located 1000 km closer to the equator, could expect 33% fewer cases per million inhabitants. Since the change in Earth's angle towards the sun between equinox and solstice is about 23.5°, one could expect a difference in cases per million inhabitants of 64% between two hypothetical countries whose climates differ to a similar extent as two adjacent seasons. According to our results, countries are expected to see a decline in new COVID-19 cases during summer and a resurgence during winter. However, our results do not imply that the disease will vanish during summer or will not affect countries close to the equator. Rather, the higher temperatures and more intense UV radiation in summer are likely to support public health measures to contain SARS-CoV-2

    Single photon emitters based on Ni/Si related defects in single crystalline diamond

    Full text link
    We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.Comment: 7 pages, submitted to Applied Physics B, revised versio
    • …
    corecore