2,298 research outputs found

    Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage

    Get PDF
    A biexciton in a semiconductor quantum dot is a source of polarization-entangled photons with high potential for implementation in scalable systems. Several approaches for non-resonant, resonant and quasi-resonant biexciton preparation exist, but all have their own disadvantages, for instance low fidelity, timing jitter, incoherence or sensitivity to experimental parameters. We demonstrate a coherent and robust technique to generate a biexciton in an InGaAs quantum dot with a fidelity close to one. The main concept is the application of rapid adiabatic passage to the ground state-exciton-biexciton system. We reinforce our experimental results with simulations which include a microscopic coupling to phonons.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, accepted as a Rapid Communication in PRB. arXiv admin note: text overlap with arXiv:1701.0130

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation

    Get PDF
    Excitation of a semiconductor quantum dot with a chirped laser pulse allows excitons to be created by rapid adiabatic passage. In quantum dots this process can be greatly hindered by the coupling to phonons. Here we add a high chirp rate to ultra-short laser pulses and use these pulses to excite a single quantum dot. We demonstrate that we enter a regime where the exciton-phonon coupling is effective for small pulse areas, while for higher pulse areas a decoupling of the exciton from the phonons occurs. We thus discover a reappearance of rapid adiabatic passage, in analogy to the predicted reappearance of Rabi rotations at high pulse areas. The measured results are in good agreement with theoretical calculations.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, submitted to PR

    The JEREMI-project on thermocapillary convection in liquid bridges. Part A : Overview of particle accumulation structures

    Get PDF
    The rapid accumulation of particles suspended in a thermocapillary liquid bridge is planned to be investigated during the JEREMI experiment on the International Space Station scheduled for 2016. An overview is given of the current status of experimental and numerical investigations of this phenomenon

    Decoupling a hole spin qubit from the nuclear spins

    Get PDF
    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform

    Circuit theory of multiple Andreev reflections in diffusive SNS junctions: the incoherent case

    Full text link
    The incoherent regime of Multiple Andreev Reflections (MAR) is studied in long diffusive SNS junctions at applied voltages larger than the Thouless energy. Incoherent MAR is treated as a transport problem in energy space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is explained in terms of diffusion flows of electrons and holes through tunnel and Andreev resistors. These resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in OTBK theory for ballistic junctions. The theory is applied to the subharmonic gap structure (SGS); simple analytical results are obtained for the distribution function and current spectral density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution is found in terms of chain-fractions, and the current is calculated numerically. SGS shows qualitatively different behavior for even and odd subharmonic numbers, and the maximum slopes of the differential resistance correspond to the gap subharmonics. The influence of inelastic scattering on the subgap anomalies of the differential resistance is analyzed.Comment: 14 pages, 9 figures, title and text revised, to appear in PR

    Magnetic properties of (VO)_2P_2O_7: two-plane structure and spin-phonon interactions

    Full text link
    Detailed experiments on single-crystal (VO)_2P_2O_7 continue to reveal new and unexpected features. We show that a model composed of two, independent planes of spin chains with frustrated magnetic coupling is consistent with nuclear magnetic resonance and inelastic neutron scattering measurements. The pivotal role of PO_4 groups in mediating intrachain exchange interactions explains both the presence of two chain types and their extreme sensitivity to certain lattice vibrations, which results in the strong magnetoelastic coupling observed by light scattering. We compute the respective modifications of the spin and phonon dynamics due to this coupling, and illustrate their observable consequences on the phonon frequencies, magnon dispersions, static susceptibility and specific heat.Comment: 10 pages, 9 figure

    Pattern selection as a nonlinear eigenvalue problem

    Full text link
    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in: Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann (Springer, Berlin, 1996

    Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    Full text link
    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron ppˉp\bar{p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty
    • …
    corecore