6,057 research outputs found

    Selective Transparence of Single-Mode Waveguides with Surface Scattering

    Full text link
    A random surface scattering in a one-mode waveguide is studied in the case when the surface profile has long-range correlations along the waveguide. Analytical treatment of this problem shows that with a proper choice of the surface, one can arrange any desired combination of transparent and non-transparent frequency windows. We suggest a method to find such profiles, and demonstrate its effectiveness by making use of direct numerical simulations.Comment: RevTex, 3 pages including 2 ps-figure

    On the theory of cavities with point-like perturbations. Part II: Rectangular cavities

    Full text link
    We consider an application of a general theory for cavities with point-like perturbations for a rectangular shape. Hereby we concentrate on experimental wave patterns obtained for nearly degenerate states. The nodal lines in these patterns may be broken, which is an effect coming only from the experimental determination of the patterns. These findings are explained within a framework of the developed theory.Comment: 14 pages, 3 figure

    Measurement of the Higgs Boson Mass with a Linear e+e- Collider

    Full text link
    The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.Comment: 19 pages, 10 Figure

    Microwave realization of quasi one-dimensional systems with correlated disorder

    Full text link
    A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Green's function of the system. With its help we will investigate quasi-1D structures with various types of disorder. We will focus on stratified structures, i.e., structures that are homogeneous perpendicular to the direction of wave propagation. In this case the interaction between different channels is absent, so wave propagation occurs individually in each open channel. We will apply analytical results developed in the theory of one-dimensional (1D) disordered models in order to explain main features of the quasi-1D transport. The main focus will be selective transport due to long-range correlations in the disorder. In our setup, we can intentionally introduce correlations by changing the positions of periodically spaced brass bars of finite thickness. Because of the equivalence of the stationary Schr\"odinger equation and the Helmholtz equation, the result can be directly applied to selective electron transport in nanowires, nanostripes, and superlattices.Comment: 11 pages, 9 figure

    On the theory of cavities with point-like perturbations. Part I: General theory

    Full text link
    The theoretical interpretation of measurements of "wavefunctions" and spectra in electromagnetic cavities excited by antennas is considered. Assuming that the characteristic wavelength of the field inside the cavity is much larger than the radius of the antenna, we describe antennas as "point-like perturbations". This approach strongly simplifies the problem reducing the whole information on the antenna to four effective constants. In the framework of this approach we overcame the divergency of series of the phenomenological scattering theory and justify assumptions lying at the heart of "wavefunction measurements". This selfconsistent approach allowed us to go beyond the one-pole approximation, in particular, to treat the experiments with degenerated states. The central idea of the approach is to introduce ``renormalized'' Green function, which contains the information on boundary reflections and has no singularity inside the cavity.Comment: 23 pages, 6 figure

    Spectral correlations in systems undergoing a transition from periodicity to disorder

    Get PDF
    We study the spectral statistics for extended yet finite quasi 1-d systems which undergo a transition from periodicity to disorder. In particular we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits -- the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs.Comment: 16 pages, Late

    Onset of Delocalization in Quasi-1D Waveguides with Correlated Surface Disorder

    Full text link
    We present first analytical results on transport properties of many-mode waveguides with rough surfaces having long-range correlations. We show that propagation of waves through such waveguides reveals a quite unexpected phenomena of a complete transparency for a subset of propagating modes. These modes do not interact with each other and effectively can be described by the theory of 1D transport with correlated disorder. We also found that with a proper choice of model parameters one can arrange a perfect transparency of waveguides inside a given window of energy of incoming waves. The results may be important in view of experimental realizations of a selective transport in application to both waveguides and electron/optic nanodevices.Comment: RevTex, 4 pages, no figures, few references are adde

    Willing and able: action-state orientation and the relation between procedural justice and employee cooperation

    Get PDF
    Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals
    • …
    corecore