26 research outputs found

    KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission

    Get PDF
    Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria

    “UnPAKing” Human Immunodeficiency Virus (HIV) Replication: Using Small Interfering RNA Screening To Identify Novel Cofactors and Elucidate the Role of Group I PAKs in HIV Infection

    No full text
    In order to identify novel proviral host factors involved in human immunodeficiency virus (HIV) infection, we performed a screen of a small interfering RNA (siRNA) library targeting 5,000 genes with the highest potential for being targets for therapeutics. Many siRNAs in the library against known host factors, such as TSG101, furin, and CXCR4, were identified as inhibitors by the screen and thus served as internal validation. In addition, many novel factors whose knockdown inhibited infection were identified, including Pak3, a member of the serine/threonine group I PAK kinases. The HIV accessory factor Nef has been shown to associate with a PAK kinase, leading to enhanced viral production; however, the exact identity of the kinase has remained controversial. Prompted by the Pak3 screen hit, we further investigated the involvement of group I PAK kinases in HIV using siRNA. Contrary to the current literature, Pak1 depletion strongly inhibited HIV infection in multiple cell systems and decreased levels of integrated provirus, while Pak2 depletion showed no effect. Overexpression of a constitutively active Pak1 mutant also enhanced HIV infection, further supporting its role as the dominant PAK involved

    High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

    Get PDF
    SummaryPreventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs

    Mutations in the P‑Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials

    Get PDF
    Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against <i>Plasmodium falciparum</i> asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resistance. Whole genome sequencing of three resistant lines showed that each had acquired independent mutations in a P-type cation-transporter ATPase, PfATP4 (PF3D7_1211900), a protein implicated as the novel <i>Plasmodium</i> spp. target of another, structurally unrelated, class of antimalarials called the spiroindolones and characterized as an important sodium transporter of the cell. Similarly to the spiroindolones, GNF-Pf4492 blocks parasite transmission to mosquitoes and disrupts intracellular sodium homeostasis. Our data demonstrate that PfATP4 plays a critical role in cellular processes, can be inhibited by two distinct antimalarial pharmacophores, and supports the recent observations that PfATP4 is a critical antimalarial target

    4-hydroxy-2-pyridones, a novel class of promising direct inhA inhibitors active against tuberculosis.

    No full text
    Multi-drug resistant tuberculosis continues to be a major public health threat, particularly in the developing world. New chemotherapeutic agents are urgently required to combat the TB menace. We identified 4-hydroxy-2-pyridones, a new class of small molecules active against Mtb through phenotypic high-throughput screen. A lead candidate, NITD-916, is a potent bactericidal agent with a promising safety profile. NITD-916 demonstrated a dose dependent efficacy in vivo in acute and established mouse-infection models. Mechanism of-action studies identified the molecular target of NITD-916 as enoyl reductase (InhA), the clinically validated target of isoniazid and ethionamide. ITC and X-ray crystallography revealed that NITD-916 specifically binds to InhA in a NADH-dependent manner and blocks the lipid-substrate binding pocket. The NITD-916 co-crystal structure with InhA has opened-up new avenues for structure-guided rational drug discovery on a phenotypic-screening hit. Isoniazid resistant TB clinical isolates that are most frequently encountered remain fully susceptible to NITD-916, demonstrating the potential use of 4-hydroxy-2-pyridones against MDR-TB
    corecore