149 research outputs found

    A comparison of colorimetric and visual methods for the assessment of masticatory performance with color-changeable chewing gum in older persons

    Get PDF
    Background/purpose Color-changeable chewing gum is used for the evaluation of masticatory performance. However, it is currently unclear whether colorimetric and visual assessment methods yield consistent results. This study aimed to clarify the consistency between colorimetric and visual methods used for the evaluation of color changes in color-changeable chewing gum. Materials and methods The sample comprised 644 older persons (mean age, 75.4 ± 6.4 years). The chewing gum was masticated 60 times at the participant's own chewing rate and then expectorated. The color of the chewing gum was evaluated with the ΔE values and a∗ values, measured using a colorimeter, and the 10 Color Shades (10CSh) and 5 Color Scales (5CSc), using visual evaluation. Spearman's correlation analysis was performed to examine the correlation between the results obtained by the four methods. The significance level was set at α = 0.05. Results The ΔE values, a∗ values, 10CSh scores, and 5CSc scores were all significantly correlated. The highest correlation coefficient (0.979) was between the ΔE values and a∗ values. The lowest correlation coefficient (0.847) was between the a∗ values and 5CSc scores. Decreased masticatory performance was observed with increased age. Conclusion Significant correlations were found for all four methods used in the assessment of masticatory performance with color-changeable chewing gum. While visually based assessments are valid, colorimetric methods are more sensitive to smaller changes in masticatory performance

    Diverse Bone Morphogenetic Protein Expression Profiles and Smad Pathway Activation in Different Phenotypes of Experimental Canine Mammary Tumors

    Get PDF
    BACKGROUND:BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS:We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE:We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors

    Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Get PDF
    BACKGROUND: Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear.METHODS: In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs), whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I.RESULTS: It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2.CONCLUSION: It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.Author has checked copyrightDG 16/11/1

    Trypanosoma brucei Glycogen Synthase Kinase-3, A Target for Anti-Trypanosomal Drug Development: A Public-Private Partnership to Identify Novel Leads

    Get PDF
    Over 60 million people in sub-Saharan Africa are at risk of infection with the parasite Trypanosoma brucei which causes Human African Trypanosomiasis (HAT), also known as sleeping sickness. The disease results in systemic and neurological disability to its victims. At present, only four drugs are available for treatment of HAT. However, these drugs are expensive, limited in efficacy and are severely toxic, hence the need to develop new therapies. Previously, the short TbruGSK-3 short has been validated as a potential target for developing new drugs against HAT. Because this enzyme has also been pursued as a drug target for other diseases, several inhibitors are available for screening against the parasite enzyme. Here we present the results of screening over 16,000 inhibitors of human GSK-3β (HsGSK-3) from the Pfizer compound collection against TbruGSK-3 short. The resulting active compounds were tested for selectivity versus HsGSK-3β and a panel of human kinases, as well as their ability to inhibit proliferation of the parasite in vitro. We have identified attractive compounds that now form potential starting points for drug discovery against HAT. This is an example of how a tripartite partnership involving pharmaceutical industries, academic institutions and non-government organisations such as WHO TDR, can stimulate research for neglected diseases

    Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals?

    Get PDF
    Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a “cry wolf” signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike

    Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoblasts are considered to primarily arise from osseous progenitors within the periosteum or bone marrow. We have speculated that cells from local soft tissues may also take on an osteogenic phenotype. Myoblasts are known to adopt a bone gene program upon treatment with the osteogenic bone morphogenetic proteins (BMP-2,-4,-6,-7,-9), but their osteogenic capacity relative to other progenitor types is unclear. We further hypothesized that the sensitivity of cells to BMP-2 would correlate with BMP receptor expression.</p> <p>Methods</p> <p>We directly compared the BMP-2 sensitivity of myoblastic murine cell lines and primary cells with osteoprogenitors from osseous tissues and fibroblasts. Fibroblasts forced to undergo myogenic conversion by transduction with a MyoD-expressing lentiviral vector (LV-MyoD) were also examined. Outcome measures included alkaline phosphatase expression, matrix mineralization, and expression of osteogenic genes <it>(alkaline phosphatase, osteocalcin </it>and <it>bone morphogenetic protein receptor-1A) </it>as measured by quantitative PCR.</p> <p>Results</p> <p>BMP-2 induced a rapid and robust osteogenic response in myoblasts and osteoprogenitors, but not in fibroblasts. Myoblasts and osteoprogenitors grown in osteogenic media rapidly upregulated <it>Bmpr-1a </it>expression. Chronic BMP-2 treatment resulted in peak <it>Bmpr-1a </it>expression at day 6 before declining, suggestive of a negative feedback mechanism. In contrast, fibroblasts expressed low levels of <it>Bmpr-1a </it>that was only weakly up-regulated by BMP-2 treatment. Bioinformatics analysis confirmed the presence of myogenic responsive elements in the proximal promoter region of human and murine <it>BMPR-1A/Bmpr-1a</it>. Forced myogenic gene expression in fibroblasts was associated with a significant increase in <it>Bmpr-1a </it>expression and a synergistic increase in the osteogenic response to BMP-2.</p> <p>Conclusion</p> <p>These data demonstrate the osteogenic sensitivity of muscle progenitors and provide a mechanistic insight into the variable response of different cell lineages to BMP-2.</p
    corecore