2,108 research outputs found

    Nature of the Quantum Phase Transition in Quantum Compass Model

    Get PDF
    In this work, we show that the quantum compass model on an square lattice can be mapped to a fermionic model with local density interaction. We introduce a mean-field approximation where the most important fluctuations, those perpendicular to the ordering direction, are taken into account exactly. It is found that the quantum phase transition point at Jx=JzJ_x=J_z marks a first order phase transition. We also show that the mean field result is robust against the remaining fluctuation corrections up to the second order.Comment: 7 pages, 10 fig

    Phase transition and critical properties of spin-orbital interacting systems

    Full text link
    Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though Landau effective field theory predicts the second-order phase transition of the composite spin-orbital order, however, the critical exponents obtained by the renormalization group approach demonstrate that the spin-orbital order-disorder transition is far from the second-order, rather, it is more close to the first-order, implying that the widely observed first-order transition in many transition-metal oxides may be intrinsic. The unusual critical behavior near the transition point is attributed to the fractionalization of the composite order parameter.Comment: Accepted to Phys. Lett.

    Spin-Orbital Entanglement and Phase Diagram of Spin-orbital Chain with SU(2)×SU(2)SU(2) \times SU(2) Symmetry

    Get PDF
    Spin-orbital entanglement in quantum spin-orbital systems is quantified by a reduced von Neumann entropy, and is calculated for the ground state of a coupled spin-orbital chain with SU(2)×SU(2)SU(2)\times SU(2) symmetry. By analyzing the discontinuity and local extreme of the reduced entropy as functions of the model parameters, we deduce a rich phase diagram to describe the quantum phase transitions in the model. Our approach provides an efficient and powerful method to identify phase boundaries in a system with complex correlation between multiply degrees of freedom.Comment: 4 pages, 3 figure

    Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Full text link
    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps on to a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.Comment: 4 page

    N\'eel and Spin-Peierls ground states of two-dimensional SU(N) quantum antiferromagnets

    Get PDF
    The two-dimensional SU(N) quantum antiferromagnet, a generalization of the quantum Heisenberg model, is investigated by quantum Monte Carlo simulations. The ground state for N4N\le 4 is found to be of the N\'eel type with broken SU(N) symmetry, whereas it is of the Spin-Peierls type for N5N\ge 5 with broken lattice translational invariance. No intermediate spin-liquid phase was observed in contrast to previous numerical simulations on smaller lattices [Santoro et al., Phys. Rev. Lett. {\bf 83} 3065 (1999)].Comment: 4 pages, 4 figure

    Doping dependence of the exchange energies in bilayer manganites: Role of orbital degrees of freedom

    Full text link
    Recently, an intriguing doping dependence of the exchange energies in the bilayer manganites La22xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 has been observed in the neutron scattering experiments. The intra-layer exchange only weakly changed with doping while the inter-layer one drastically decreased. Here we propose a theory which accounts for these experimental findings. We argue, that the observed striking doping dependence of the exchange energies can be attributed to the evaluation of the orbital level splitting with doping. The latter is handled by the interplay between Jahn-Teller effect (supporting an axial orbital) and the orbital anisotropy of the electronic band in the bilayer structure (promoting an in-plane orbital), which is monitored by the Coulomb repulsion. The presented theory, while being a mean-field type, describes well the experimental data and also gives the estimates of the several interesting energy scales involved in the problem.Comment: Added references, corrected typos. To appear in Phys. Rev.

    First integrals of Ginzburg-Landau equations and stability criteria for vortex-free state in unconventional superconductors

    Full text link
    The first integrals of the Ginzburg-Landau equations for a vortex-free state of superconductors with different mixed symmetries of the order parameter are found. The general boundary conditions for the order parameter at the ideal interface between the superconductor and vacuum are derived. Based on these integrals and boundary conditions, we analyze the stability criteria for vortex-free state in unconventional superconductors. The threshold field above which the Abrikosov vortices can enter the superconductor is found to be higher or equal to the thermodynamic critical field for all states under study.Comment: 8 pages, pdf file, no figure

    Numerical study of the one-dimensional quantum compass model

    Full text link
    The ground state magnetic phase diagram of the one-dimensional quantum compass model (QCM) is studied using the numerical Lanczos method. A detailed numerical analysis of the low energy excitation spectrum is presented. The energy gap and the spin-spin correlation functions are calculated for finite chains. Two kind of the magnetic long-range orders, the Neel and a type of the stripe-antiferromagnet, in the ground state phase diagram are identified. Based on the numerical analysis, the first and second order quantum phase transitions in the ground state phase diagram are identified.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1105.211

    Thermal/Electronic Transport Properties and Two-Phase Mixtures in La_{5/8-x}Pr_{x}Ca_{3/8}MnO_{3}

    Full text link
    We measured thermal conductivity, k, thermoelectric power, S, and dc electric conductivity, sigma, of La_{5/8-x}Pr_{x}Ca_{3/8}MnO_{3}, showing an intricate interplay between metallic ferromagnetism (FM) and charge ordering (CO) instability. The change of k, S and sigma with temperature (T) and x agrees well with the effective medium theories for binary metal-insulator mixtures. This agreement clearly demonstrates that with the variation of T as well as x, the relative volumes of FM and CO phases drastically change and percolative metal-insulator transition occurs in the mixture of FM and CO domains.Comment: 8 pages, 4 eps figures included, to appear in Phys. Rev. Let

    Manganites at Quarter Filling: Role of Jahn-Teller Interactions

    Full text link
    We have analyzed different correlation functions in a realistic spin-orbital model for half-doped manganites. Using a finite-temperature diagonalization technique the CE phase was found in the charge-ordered phase in the case of small antiferromagnetic interactions between t2gt_{2g} electrons. It is shown that a key ingredient responsible for stabilization of the CE-type spin and orbital-ordered state is the cooperative Jahn-Teller (JT) interaction between next-nearest Mn+3^{+3} neighbors mediated by the breathing mode distortion of Mn+4^{+4} octahedra and displacements of Mn+4^{+4} ions. The topological phase factor in the Mn-Mn hopping leading to gap formation in one-dimensional models for the CE phase as well as the nearest neighbor JT coupling are not able to produce the zigzag chains typical for the CE phase in our model.Comment: 16 pages with 16 figures, contains a more detailed parameter estimate based on the structural data by Radaelli et al. (accepted for publication in Phys. Rev. B
    corecore