View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Purdue E-Pubs

Physics

Physics Research Publications

Purdue University Year 2007

Quantum phase transition in the
quantum compass model

H. D. Chen C. Fang

J. P. Hu H. Yao

This paper is posted at Purdue e-Pubs.
http://docs.lib.purdue.edu/physics_articles/739


https://core.ac.uk/display/4953584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICAL REVIEW B 75, 144401 (2007)

Quantum phase transition in the quantum compass model

Han-Dong Chen
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Chen Fang and Jiangping Hu
Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

Hong Yao
Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 14 December 2006; published 2 April 2007)

In this work, we show that the quantum compass model on a square lattice can be mapped to a fermionic
model with local-density interaction. We introduce a mean-field approximation where the most important
fluctuations, those perpendicular to the ordering direction, are taken into account exactly. It is found that the
quantum phase transition point at J,=J, marks a first-order phase transition. We also show that the mean-field
result is robust against the remaining fluctuation corrections up to the second order.
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I. INTRODUCTION

Quantum compass model! has recently attracted great
interest.>= It was originally proposed as a simplified model
to describe some Mott insulators with orbit degeneracy de-
scribed by a pseudospin. In particular, the compass model
describes a system where the anisotropy of the spin coupling
is related to the orientation of bonds. More recently, it was
also proposed as a realistic model to generate protected
qubits.? It has been argued that the eigenstates of the quan-
tum compass model are two- and only twofold degenerate.’
The twofold degenerate ground state can be an implementa-
tion of a protected qubit if it is separated from the low-
energy excitations by a finite gap. Symmetry will prevent
weak noise from destroying the degeneracy. Based on the
protected qubits, which has high quality factor, a scalable
and error-free schema of quantum computation can be
designed.®’ The twofold degenerate state has been shown to
be gapped from low-energy excitations based on the results
calculated in a small size system.> However, the results can-
not be extended to large size systems. The results from semi-
classical spin-wave study, exact diagonalization, and Green’s
function Monte Carlo calculation on finite-size clusters have
suggested that the system develops a spontaneously
symmetry-broken state in the thermodynamic limit.* In the
spin-wave study, the Hamiltonian is expanded around the
uniform classical ground state up to the first order of 1/S. It
is found that there is a directional ordering of the ground
state at the symmetric point.* From finite-size diagonaliza-
tion of samples with size up to 5X5 and Green’s function
Monte Carlo calculation for system sizes up to 16 X 16, it is
shown that on clusters of dimension L XL, the low-energy
spectrum consists of 27 states which collapse onto each other
exponentially fast with L. At the symmetric point of J,=J,
2% 2F states collapse exponentially fast with L onto the
ground state. A first-order phase transition at the symmetric
point seems most favorable. However, the spin-wave analy-
sis ignores very important fluctuations while the exact diago-
nalization is limited by small sample size. In this work, we
first show that the spin-% quantum compass model on a
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square lattice can be exactly mapped to a fermionic model
with local-density interactions. Normally, after performing a
Jordan-Wigner transformation, one expects a nonlocal gauge
interaction between fermions in the fermionic Hamiltonian.’
However, due to the special structure of both the spin inter-
actions and the lattice, we show that the gauge interaction for
the compass model is absent, which allows us to apply con-
ventional approximation techniques developed for electron
systems to analyze the original spin model. Our approxima-
tion method automatically takes into account the most impor-
tant fluctuations, those perpendicular to the ordering direc-
tion. The remaining fluctuations can also be studied in the
perturbative approach. It is shown that our conclusion is ro-
bust against the perturbative corrections. Our results support
that a first-order phase transition happens at J,=J_ between
two different states with spin ordering along either x or z
directions.

II. COMPASS MODEL AND FERMIONIZATION

The compass model appears rather simple on the first
look,

H=_Jx2 S, ;C+1,j_‘]zz SiiSi et (1)
i,] LJ

where (7,j) is a two-dimensional coordinate. The sign of J,
and J, is not important. We can always introduce a transfor-
mation to bring them into J,,J/,=0. We assume temperature
T=0 throughout this work and set Zi=1 for simplicity.

This model has some interesting symmetries, which have
been discussed in detail in literature.>> We first recall two
types of symmetry generators of this model,’

pi=112s3. o=112si;. )

j i
It has been shown that the symmetry of this model leads
to a one-dimensional-type of behavior and directional

ordering.>*> It is also shown’ that this model is dual to re-
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cently studied models of p+ip superconducting arrays,”!%
which also show the effect of dimensional reduction.'”

With the help of the symmetry operators defined in Eq.
(2), we find that it is possible to fermionize the full compass
model. The resulted fermionic model has BCS-type pairing
along one direction and nearest-neighboring interactions
along the other direction. The Jordan-Winger transformation
can be defined as

St = ( I1 er><H [2¢} - 1])c§,,, (3)

j'<j i'<i

1

o (4)

z _ AF _
Sij=cifcii= 5

where c¢;; annihilates a fermion at site (i,j). The original
compass model Eq. (1) is transformed into

J .
H=- 2 |:Jzni,jni,j+l —Jn;;+ ZX(Ci,j - Czj)(ci+l,j+ Cil+1,j):|
ij

(5)

up to a constant. Because the interaction along the z direction
is quartic, the string-type interaction or gauge interaction dis-
appears.

III. PHASE DIAGRAM
A. General considerations

The symmetries defined in Eq. (2) also have profound
implications on the possible ordering of this model. Based on
the fact that [P;,Py]=[Q;,0;]=[P;, 0,0,/ 1=[P;P;,0;]=0
and [P;,Q;]#0, it is found that each eigenstate of this model
is two- and only twofold degenerate.® This leads to the ob-
servation that any finite system cannot have an ordering that
is characterized by some finite mean-field expectation value
of either or both (S7;) and (S} ). For instance, let us assume
the ground state |Q)) of a LX L system has finite (Sfj) One
can thus apply P; onto [2) and obtain a 2* degenerate ground
state, which is of course inconsistent with the above result of
double degeneracy. However, ordering is still possible when
the system goes to the thermodynamic limit where spontane-
ous symmetry breaking happens. The excitation gap that
separates the true ground state and other 2°~! low-energy
excitation states collapses exponentially as the system size
goes to infinity.* In this case, the spontaneously broken sym-
metries are the Z, symmetries of the one-dimensional Ising
chain along the ordering direction. Let us consider a system
L. XL, and let both L, and L, increase to infinity. If the
ordering is along the z direction, one should observe that
251 states collapse onto the true ground state and the gap
vanishes exponentially, namely e %*0 with some length scale
Ly. Since the spontaneously broken symmetries are a large
number of copies of discrete symmetry Z,, there is no corre-
sponding Goldstein mode. Furthermore, one can also effec-
tively view this spontaneous symmetry breaking as the
breaking of a set of local Z, symmetries in a one-dimensional
problem, which is along x if the ordering is along z. This
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does not violate the Elitzur’s theorem!! since in this case the

effective local Z, symmetry is realized by an infinitely long
Ising chain and thus the energy barrier to restore the symme-
try is still infinite.

We shall now consider the phase diagram in the thermo-
dynamic limit. We start from two extreme cases which are
trivial to solve. We then study how the system evolves from
one extreme to the other. It turns out that by studying this
question it is possible to obtain the phase diagram as we shall
show below.

Let us first start from the simplest limit J,=0, where the
model reduces to decoupled Ising chains. The ground state is
magnetically ordered such that (SZ)=% up to an overall flip of
all spins of each Ising chain. This ordered state thus has 2-
degeneracy for a L X L system. Similarly, at the limit of J,
=0, the spins are ordered along the x direction. We are thus
interested in how the spins rotate from the z direction to the
x direction as the ratio J,/J, changes from % to 0 and what is
the possible ground state at J,=J,. In very general, there are
four possible scenarios (see Fig. 1). The first possibility is
that there is no phase transition. The spins rotate continu-
ously from z to x through a crossover. The second scenario
corresponds to two second-order phase transitions with co-
existing of ordering along both z and x directions. The third
possibility is two second-order phase transitions with disor-
dered state in between. The fourth one is that the spins sud-
denly change from the x direction to the z direction, i.e., a
first-order phase transition happens at J,=J,.

B. Mean-field phase diagram

To find out which of the four possible scenarios happens,
we start with limit J,=0, where the system is ordered along
the z direction, and increase J, (or decrease the ratio J
=J./J,). As J, is increased, the flipping of two spins on ad-
jacent chains is introduced. This process tends to reduce the
ordered moment along the z direction. On the other hand, the
ordering along the z direction acts as an effective transverse
field and suppresses the ordering along the x direction of the
spins on adjacent chains. This effect is described by a one-
dimensional (1D) Ising chain with a transverse field, which
has a critical transverse field.'> When J, is much smaller than
J., the ordering of spins along the x direction is fully sup-
pressed by the adjacent spins ordered along the z direction.
We then ask at what value of J, the spins start to order along
the x direction. For the crossover case, (S,) has a finite value
as long as J, is not zero. For the second scenario, two
second-order phase transitions with intermediate coexisting
state (S,) starts to develop at some value of J that is larger
than 1. For the last two cases, the expectation value of S, is
zero for all J,<J,, while (S,) takes a finite value for all J,
>J, in the first-order phase transition scenario. To determine
the behavior of (§*) and (S%), we self-consistently study the
mean-field decoupled Hamiltonian,

Hypll,=- 2 Si St~ > B {D)S; ;. (6)
ij ij
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The mean-field decoupling is justified, since we start from
the situation where S° is ordered and want to know when S*
starts to develop a finite expectation value. This mean-field
decoupled Hamiltonian describes the most important fluctua-
tion in the state with spins ordered along the z direction. The
ordering along the x direction is suppressed by the ordering
along the z direction, which behaves as an effective trans-
verse field for S,. On the other hand, the feedback effect on
S, due to S, fluctuations is also included in this approach
through the self-consistent condition

(S5 =<ulsi |, (8)

where |¢) is the ground state of the mean-field Hamiltonian
H),r. To minimize the ground-state energy, it is favorable to
have (Sf’j> Jj-independent, i.e., the moment on the same chain
is uniform such that the J, terms are minimized. The mean-
field Hamiltonian thus describes a series of decoupled Ising
chains with an effective transverse magnetic field B,
=2J(S} j) that is determined self-consistently.

To minimize the coupling energy along the z direction,
one would expect that |B,;(i)|=B,; is i independent. If
B,y(i)=-B,, we can rotate the spins on ith row by an angle
ar around the x axis. Without losing generality, we can thus
consider the case where B,/(i)=B,.

In the Fermionic language, the mean-field decoupling in-
troduced in Eq. (6) corresponds to the decoupling of the
interaction term J_n; jn; ;.1 —J.n;; into an effective chemical
potential term un;; with

This Hamiltonian can be diagonalized using Bogoliubov
transformation,

where ¢, is the Fourier transformation of ¢(i). The u; and v,
can be solved to yield

1 02—
uk=\/5<1+%)’ (11)

1 02—
vkzi\/5<l——(cos Z_k “) (12)

with E;=\1/4—u cos k+u>. It follows that the expectation
value of S° is

1 (*™ 2B,;—cosk
(y=—| dk—4L—"= (13)
27, 8E,/J,

The self-consistent equation thus reads

J [ cos k—2B,
Bpr=— _f dk— i == (14)
™J V1 —4B,;cos k+ 4B,

From the results shown in Fig. 2, we know there are non-
trivial solutions to the self-consistent equation (14) for J
=0.7446. The jump happens at B,;=~0.65>B.=1/2. Below
B, which is the critical point of the Ising chain in a trans-
verse magnetic field, S, starts to develop a nonzero expecta-
tion value. We notice two important results that can help us
determine the phase diagram. First, the critical point B, hap-
pens at a J smaller than the symmetry point J=1, below
which ordering along the z direction is no longer a reason-
able assumption. For J<1, the ordering along x direction is
instead more favorable. This implies that (S*) cannot develop
a finite value for J,<<J,. The first two scenarios, namely
crossover scenario and two second-order phase transitions
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FIG. 2. The solution to self-consistent equation (14). There is no
nontrivial solution for J<0.7446. (a) The effective transverse field
B, vs J. (b) The ordered moment along z direction (S°) vs J.

scenario, are thus excluded. Second, the self-consistent equa-
tion has nontrivial solutions for J>0.7446, which means
spins order along z direction for J,>J,. Combining these
two points, we conclude that there is a first-order phase tran-
sition at J=1. At J>1, the spins are ordered along the z
direction while they are along the x direction for J<1. At
J=1, the spins are either along the x or z direction since our
argument above shows that the ordering at /=1 along the
x(z) direction induces a strong enough transverse field to
suppress the ordering along the z(x) direction. This conclu-
sion is consistent with the spin-wave analysis.* In spin-wave
analysis, fluctuations of both directions are taken into ac-
count partially. In our approach, the most important fluctua-
tions, namely the ordering direction of weaker bond, is
solved exactly.

C. Beyond mean-field approximation

Although the mean-field approximation has included the
most important fluctuations, there are still concerns about the
effect of the ignored fluctuations. To further study the effect
of fluctuations, we calculate the energy gap by perturbation.
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o = cos(6,+60,)/2 = B_(k,k,)

k, k,
: = -cos(0,+6, )2 =B_(K k)
K, K,
> " =isin(e,6,)2 =B, (k,k,)
4 2
- > =isin(e,-6,)/2 =B (k k)

1 2

FIG. 3. Four possible contributions of the jth line to the
vertex.

The perturbation comes from the interaction terms that are
ignored in the mean-field Hamiltonian Eq. (6),

Him=_2‘lzni,jni,j+1 +2Jz<n>2 n;. (15)
ij ij

In terms of Feynman diagrams, there are hence two kinds
of vertices: the two-particle interaction vertex and external
field interaction. Let us first work out the Feynman rules for
the two-particle interactions. We observe that the interactions
are between particles on nearest-neighboring lines. The ver-
tex of two-particle interaction thus consists of three parts, the
coupling strength, the contribution from the jth line, and the
contribution from the neighboring (j+1)th or (j—1)th line.
There are four possible types of contributions, which are
given in Fig. 3 with

—sink

—_. (16)
2J /J+cos k

tan 0, =

The first line corresponds to (ykzy,g)(yk]y,il). In this sec-
tion, we will use (A) to denote the expectation value of op-
erator A in the unperturbed mean-field ground state. This
term can be obtained by contraction from either
<7k2(?’/t27k1)7/t,> or <7’k2(7’k17’zz) yzl>. The coherence factor of

. L . Ok %, .
(y,tzykl) in the two-particle interaction is cos 7' cos 5 while

L T .
the one of ('ykly,tz) is sin 5 sin 5. Taking into account the

sign difference between these two contractions, we find
6 +6,
B, _(ky,k;)=cos k'z = Similarly, we get the results for other

three possibilities. The resulted vertex for two-particle inter-
action is thus —J_B/(k ,k,)B/*!(ks,k,) with the corresponding
Feynman diagram sketched in Fig. 4. Here, we have not
shown the arrows associated with k;,k,,k;+¢q,k,—¢q. These
arrows determine the corresponding subscripts of B/*! and
B/. The corresponding momentum conservation law for
the vertex is &(xk,xk,+k;+k,) where the signs of k,(k3)

j+1 ;

FIG. 4. The vertex of two-particle interaction.

= - Bk, k)B (K k,)
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FIG. 5. The vertex for the external field term.

and k,(k,) are the first and second subscripts of B/(B/*!).
For  instance, the momentum  conservation for
Bl _(ky,ky) B (ks ky) is 8(ky+k3—ko—ky). Similarly, we can
obtain the vertex for the external field term as illustrated in
Fig. 5.

We are now at the position to calculate the Feynman rule
for bubbles. The clockwise bubble corresponds to (y,y;)

2

. Ch O . .
with coherence factor sin” 5 while the counterclockwise one

is (y/70)=0 with coherence factor cos %. The Feynman
rules for the bubble and propagator of a particle is shown in
Fig. 6. A noticeable difference between this propagator and
the one in the familiar case of electrons under Coulomb re-
pulsion is that we only have the plus sign before the infini-
tesimal imaginary part. This is because in the current system,
we do not have a Fermi sea as ground state and therefore do
not have a hole propagator. This property of the system
largely reduces the number of diagrams we need to calculate.
Finally, every intermediate four-momentum should be inte-
grated with a factor of (—i)/(2m).
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FIG. 6. The Feynman rules for the bubble and propagator of the
particle.

With all the Feynman rules in hand, we are now ready to
do perturbative calculations. The first-order correction to the
self-energy is given in Fig. 7. The first term is the contribu-
tion from the interaction with nearest-neighbor lines. The
factor 2 comes from the fact that there are two nearest-
neighbor lines. The second term is from the “external field”
term in Eq. (15). The first-order perturbation vanishes in the
mean-field decoupling of Eq. (6). The leading-order correc-
tion is thus second-order perturbation given by the connected
amputated graphs as shown in Fig. 8.

There are five pieces of nonzero second-order correction
to the single-particle propagator. We detail the calculation of
them separately. The first two diagrams denote the self-
energy process involving two particle-particle interactions.
The overall factor of 2 stems from the fact that a particle on
the, say, jth chain can either interact with the (j—1)th or the
(j+1)th chain. The relative minus in the bracket is there
because we invert three (an odd number) of the propagators
in the second diagram. Direct application of the Feynman
rules we derived yields

27T

( i, ) jw cos (6 + 6 2150 (G s, 4, - 6,)/2]

0 W~ &

dk,dk, (17)

=~ €k, ™ €k ~k,

27T

where I, and I, are the contributions from the first and sec-
ond pieces of Fig. 8, respectively. The intermediate frequen-
cies w; and w, have been integrated.

The third and the fourth diagrams denote self-energy pro-
cesses involving one particle-particle interaction and one ex-
ternal field perturbation. The factor of 2 stems from the same
argument and the overall negative sign can be obtained by
working out the contractions. Their analytical expressions /3
and I, read

iJZ)JZW sin® s cos 6,

- dk’, (19
e (19)

I3=I4=—2Jz<n>< e
0 k!

where again, the intermediate frequency has been integrated.

I (&)2f2” sin’[ (6, — ekl)/z]Sinz[(e—k—kl—kz - 6;,)12]
2

dk,dk,, (18)

0 w + fkl + Ekz + E_k_kl_kz

The last piece of the expression denotes a process that
involves two external field perturbations. It is easy to obtain
the analytical expression as

.2
Iy == i (2 O (20)

w+ €

x

2X +

k, o k, ©

Kk, @ k,

FIG. 7. First-order correction to the self-energy.
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FIG. 8. Second-order correction to the self-energy.

ON/A

FIG. 9. (a) Energy gap of the ground state with second-order
perturbation. (b) The ratio between second-order correction and the
energy gap itself.
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FIG. 10. (a) The ordered moment along the z direction vs J,/J,.
(b) The effective field B,;=2J.S, after second-order correction is
included. Solid lines are the results with second-order perturbation
included while dashed lines are mean-field results.

In this way, we have exhausted all possible self-energy
processes to the second order of J,. The resulted sum of the
diagrams is given by —i3(w,k)=21,-21,—-213-21,+Is,
where 2 (w, k) is the correction to the propagator of a quasi-
particle carrying momentum k. The energy of a particle can
be defined as the singularity of its propagator and readily
obtained by solving the following equation:

E(k) - e,— S(E(K),k) =0. 1)

The energy gap is defined as the lowest energy of excitation,
which is numerically calculated and shown in Fig. 9. The
second-order correction amounts to about 30% of the
corrected energy gap itself at the symmetric point J,=J,. In
Fig. 10, we also plot the ordered moment S, as a function of
J.1J,. Again, the moment is reduced by a small second-order
correction. At the symmetric point, the effective field is still
larger than the critical value B.=1/2 below which an ordered
moment along the x direction becomes possible. We thus
conclude that the mean-field results are robust against the
second-order perturbation.
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IV. CONCLUSION

In conclusion, we show that the compass model can be
mapped to a fermion model with local-density interaction.
Through a self-consistent solution of the model, we argue
that there is a first-order phase transition at the symmetric
point J,=J,. This conclusion is consistent with spin-wave
analysis and recent numeric computations of the spectrum.*
In our approach, the most important fluctuation, namely the
fluctuations along the weak-coupling direction, is taken into
account exactly. The fluctuations along the ordering direction
is considered up to second-order perturbation. It is shown

PHYSICAL REVIEW B 75, 144401 (2007)

that the result of our mean-field approximation is robust
against such corrections.
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