223 research outputs found

    On model selection criteria for climate change impact studies

    Full text link
    Climate change impact studies inform policymakers on the estimated damages of future climate change on economic, health and other outcomes. In most studies, an annual outcome variable is observed, e.g. annual mortality rate, along with higher-frequency regressors, e.g. daily temperature and precipitation. Practitioners use summaries of the higher-frequency regressors in fixed effects panel models. The choice over summary statistics amounts to model selection. Some practitioners use Monte Carlo cross-validation (MCCV) to justify a particular specification. However, conventional implementation of MCCV with fixed testing-to-full sample ratios tends to select over-fit models. This paper presents conditions under which MCCV, and also information criteria, can deliver consistent model selection. Previous work has established that the Bayesian information criterion (BIC) can be inconsistent for non-nested selection. We illustrate that the BIC can also be inconsistent in our framework, when all candidate models are misspecified. Our results have practical implications for empirical conventions in climate change impact studies. Specifically, they highlight the importance of a priori information provided by the scientific literature to guide the models considered for selection. We emphasize caution in interpreting model selection results in settings where the scientific literature does not specify the relationship between the outcome and the weather variables.Comment: Additional simulation results available from authors by reques

    Saliency detection for large-scale mesh decimation

    Get PDF
    Highly complex and dense models of 3D objects have recently become indispensable in digital industries. Mesh decimation then plays a crucial role in the production pipeline to efficiently get visually convincing yet compact expressions of complex meshes. However, the current pipeline typically does not allow artists control the decimation process, just a simplification rate. Thus a preferred approach in production settings splits the process into a first pass of saliency detection highlighting areas of greater detail, and allowing artists to iterate until satisfied before simplifying the model. We propose a novel, efficient multi-scale method to compute mesh saliency at coarse and finer scales, based on fast mesh entropy of local surface measurements. Unlike previous approaches, we ensure a robust and straightforward calculation of mesh saliency even for densely tessellated models with millions of polygons. Moreover, we introduce a new adaptive subsampling and interpolation algorithm for saliency estimation. Our implementation achieves speedups of up to three orders of magnitude over prior approaches. Experimental results showcase its resilience to problem scenarios that efficiently scales up to process multi-million vertex meshes. Our evaluation with artists in the entertainment industry also demonstrates its applicability to real use-case scenarios

    Physiological Differences in Bleaching Response of the Coral Porites astreoides Along the Florida Keys Reef Tract During High-Temperature Stress

    Get PDF
    The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene sea-level rise and bathymetry interacted, resulting in a reef-building system with notable spatial differences in reef development. Overprinted on this geologic history, recent global and local stressors have led to degraded reefs dominated by fleshy algae, soft corals, and sponges. Here, we assessed how coral physiology (calcification rate, tissue thickness, reproduction, symbiosis, and bleaching) varies seasonally (winter vs. summer) and geographically using 40 colonies of the mustard hill coral Porites astreoides from four sites across 350 km along the FKRT from 2015 to 2017. The study coincided with a high-temperature event in late summer 2015 that caused heterogeneous levels of coral bleaching across sites. Bleaching severity differed by site, with bleaching response more aligned with heat stress retroactively calculated from local degree heating weeks than those predicted by satellites. Despite differences in temperature profiles and bleaching severity, all colonies hosted Symbiodiniaceae of the same genus (formerly Clade A and subtypes). Overall, P. astreoides at Dry Tortugas National Park, the consistently coolest site, had the highest calcification rates, symbiont cell densities, and reproductive potential (all colonies were reproductive, with most planula larvae per polyp). Corals at Dry Tortugas and Fowey Rocks Light demonstrated strong seasonality in net calcification (higher in summer) and did not express visual or partial-mortality responses from the bleaching event; in contrast, colonies in the middle and southern part of the upper keys, Sombrero Key and Crocker Reef, demonstrated similar reduced fitness from bleaching, but differential recovery trajectories following the heat stress. Identifying reefs, such as Dry Tortugas and possibly Fowey Rocks Light that may serve as heat-stress refugia, is important in selecting candidate sites for adaptive reef-management strategies, such as selective propagation and assisted gene flow, to increase coral-species adaptation to ocean warming

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    Half-Dead Colonies of Montastraea Annularis Release Viable Gametes On A Degraded Reef In The Us Virgin Islands

    Get PDF
    This article contributes to scholarship on Afroeurope by investigating the intersection of blackness, Africanness, and Europeanness in everyday discourses and social practices in the Netherlands and Italy. We examine how young African-descended Europeans are forging new ways of being both African and European through practices of self-making, which should be understood against both the historical background of colonialism and the contemporary politics of othering. Such practices take on an urgency for these youth, often encompassing a reinvention of Africanness and/or blackness as well as a challenge to dominant, exclusionary understandings of Europeanness. Comparing Afro-Dutch and Afro-Italian modes of self-making, centred on African heritage and roots, we discuss: 1) the emergence of a transnational, Afroeuropean imaginary, distinguished from both white Europe and African-American formations; and 2) the diversity of Afroeuropean modes of self-making, all rooted in distinct histories of colonialism, slavery, and immigration, and influenced by global formations of Africanness and blackness. These new Afro and African identities advanced by young Europeans do not turn away from Europeanness (as dominant identity models would assume: the more African, the less European), nor simply add to Europeanness (“multicultural” identities), nor even mix with Europeanness (“hybrid” identities), but are in and of themselves European

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Unified Methods in Collecting, Preserving, and Archiving Coral Bleaching and Restoration Specimens to Increase Sample Utility and Interdisciplinary Collaboration

    Get PDF
    Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses

    Motion Planning via Manifold Samples

    Full text link
    We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with practical, considerably simpler sampling-based approaches that are appropriate for higher dimensions. In order to facilitate the transfer of advanced geometric algorithms into practical use, we suggest taking samples that are entire low-dimensional manifolds of the configuration space that capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms for analysis of low-dimensional manifolds then provide powerful primitive operations. The modular design of the framework enables independent optimization of each modular component. Indeed, we have developed, implemented and optimized a primitive operation for complete and exact combinatorial analysis of a certain set of manifolds, using arrangements of curves of rational functions and concepts of generic programming. This in turn enabled us to implement our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. We demonstrate that the integration of several carefully engineered components leads to significant speedup over the popular PRM sampling-based algorithm, which represents the more simplistic approach that is prevalent in practice. We foresee possible extensions of our framework to solving high-dimensional problems beyond motion planning.Comment: 18 page
    • 

    corecore