12 research outputs found

    MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN

    Get PDF
    In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment

    Immunoregulation in human malaria: the challenge of understanding asymptomatic infection

    Full text link

    Prostaglandin D2 induces heme oxygenase-1 in human retinal pigment epithelial cells

    No full text
    The retinal pigment epithelium (RPE) constitutes the blood–retinal barrier, whose function is impaired in various pathological conditions, including cerebral malaria, a lethal complication of Plasmodium falciparum infection. Prostaglandin (PG) D2 is abundantly produced in the brain to regulate sleep responses. Moreover, PGD2 is a potential factor derived from intra-erythrocyte falciparum parasites. Heme oxygenase-1 (HO-1) is important for iron homeostasis via catalysis of heme degradation to release iron, carbon monoxide and biliverdin/bilirubin, and may influence iron supply to the intra-erythrocyte falciparum parasites. Here, we showed that treatment of human RPE cell lines, ARPE-19 and D407, with PGD2 significantly increased the expression levels of HO-1 mRNA, in a dose- and time-dependent manner. Transient expression assays showed that PGD2 treatment increased the HO-1-gene promoter activity through the enhancer sequence, containing a Maf-recognition element. Thus, PGD2 may contribute to the maintenance of heme homeostasis in the brain by inducing HO-1 expression
    corecore