76 research outputs found

    Seladin-1 expression is regulated by promoter methylation in adrenal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seladin-1 overexpression exerts a protective mechanism against apoptosis. Seladin-1 mRNA is variably expressed in normal human tissues. Adrenal glands show the highest levels of seladin-1 expression, which are significantly reduced in adrenal carcinomas (ACC). Since up to now seladin-1 mutations were not described, we investigated whether promoter methylation could account for the down-regulation of seladin-1 expression in ACC.</p> <p>Methods</p> <p>A methylation sensitive site was identified in the seladin-1 gene. We treated DNA extracted from two ACC cell lines (H295R and SW13) with the demethylating agent 5-Aza-2-deoxycytidine (5-Aza). Furthermore, to evaluate the presence of an epigenetic regulation also 'in vivo', seladin-1 methylation and its mRNA expression were measured in 9 ACC and in 5 normal adrenal glands.</p> <p>Results</p> <p>The treatment of cell lines with 5-Aza induced a significant increase of seladin-1 mRNA expression in H295R (fold increase, F.I. = 1.8; p = 0.02) and SW13 (F.I. = 2.9; p = 0.03). In ACC, methylation density of seladin-1 promoter was higher (2682 ± 686) than in normal adrenal glands (362 ± 97; p = 0.02). Seladin-1 mRNA expression in ACC (1452 ± 196) was significantly lower than in normal adrenal glands (3614 ± 949; p = 0.01).</p> <p>Conclusion</p> <p>On this basis, methylation could be involved in the altered pattern of seladin-1 gene expression in ACC.</p

    RETRACTED ARTICLE: Age-dependent Increase in Desmosterol Restores DRM Formation and Membrane-related Functions in Cholesterol-free DHCR24−/− Mice

    Get PDF
    Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse

    Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoid 3',5'-hydroxylases (F3'5'Hs) and flavonoid 3'-hydroxylases (F3'Hs) competitively control the synthesis of delphinidin and cyanidin, the precursors of blue and red anthocyanins. In most plants, <it>F3'5'H </it>genes are present in low-copy number, but in grapevine they are highly redundant.</p> <p>Results</p> <p>The first increase in <it>F3'5'H </it>copy number occurred in the progenitor of the eudicot clade at the time of the γ triplication. Further proliferation of <it>F3'5'H</it>s has occurred in one of the paleologous loci after the separation of Vitaceae from other eurosids, giving rise to 15 paralogues within 650 kb. Twelve reside in 9 tandem blocks of ~35-55 kb that share 91-99% identity. The second paleologous <it>F3'5'H </it>has been maintained as an orphan gene in grapevines, and lacks orthologues in other plants. Duplicate <it>F3'5'H</it>s have spatially and temporally partitioned expression profiles in grapevine. The orphan <it>F3'5'H </it>copy is highly expressed in vegetative organs. More recent duplicate <it>F3'5'H</it>s are predominately expressed in berry skins. They differ only slightly in the coding region, but are distinguished in the structure of the promoter. Differences in <it>cis</it>-regulatory sequences of promoter regions are paralleled by temporal specialisation of gene transcription during fruit ripening. Variation in anthocyanin profiles consistently reflects changes in the <it>F3'5'H </it>mRNA pool across different cultivars. More <it>F3'5'H </it>copies are expressed at high levels in grapevine varieties with 93-94% of 3'5'-OH anthocyanins. In grapevines depleted in 3'5'-OH anthocyanins (15-45%), fewer <it>F3'5'H </it>copies are transcribed, and at lower levels. Conversely, only two copies of the gene encoding the competing F3'H enzyme are present in the grape genome; one copy is expressed in both vegetative and reproductive organs at comparable levels among cultivars, while the other is transcriptionally silent.</p> <p>Conclusions</p> <p>These results suggest that expansion and subfunctionalisation of <it>F3'5'H</it>s have increased the complexity and diversification of the fruit colour phenotype among red grape varieties.</p

    Ausgedehnte retroperitoneale Blutung bei einem Jungen mit Hämophilie A infolge traumatischer Gefäßverletzung

    No full text
    corecore