
Deciphering mycorrhizal fungi in cultivated Phalaenopsis
microbiome with next-generation sequencing of multiple barcodes

Chao-Li Huang & Feng-Yin Jian & Hao-Jen Huang &

Wen-Chi Chang & Wen-Luan Wu & Chi-Chuan Hwang &

Ruey-Hua Lee & Tzen-Yuh Chiang

Received: 5 July 2013 /Accepted: 6 February 2014 /Published online: 25 February 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Identifying the species composition of a microbial
ecosystem is often hampered by difficulties in culturing the
organisms and in the low sequencing depth of traditional
DNA barcoding. Metagenomic analysis, a huge-scale
nucleotide-sequence-based tool, can overcome such difficul-
ties. In this study, Sanger sequencing of 500 nrITS clones
uncovered 29 taxa of 19 fungal genera, whereas
metagenomics with next-generation sequencing identified
512 operational taxonomic units (OTUs) for ITS1/2 and 364
for ITS3/4. Nevertheless, high throughput sequencing of PCR
amplicons of ITS1/2, ITS3/4, nrLSU-LR, nrLSU-U, mtLSU,
and mtATP6, all with at least 1,300× coverage and about 21
million reads in total, yielded a very diverse fungal composi-
tion. The fact that 74 % of the OTUs were exclusively uncov-
ered with single barcodes indicated that each marker provided
its own insights into the fungal flora. To deal with the high
heterogeneity in the data and to integrate the information on
species composition across barcodes, a rank-scoring strategy

was developed. Accordingly, 205 genera among 64 orders of
fungi were identified in healthy Phalaenopsis roots. Of the
barcodes utilized, ITS1/2, ITS3/4, and nrLSU-U were the
most competent in uncovering the fungal diversity. These
barcodes, though detecting different compositions likely due
to primer preference, provided complementary and compre-
hensive power in deciphering the microbial diversity, espe-
cially in revealing rare species.
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Introduction

The Orchidaceae (orchids) is one of the largest families of
angiosperms (Pridgeon et al. 2005). A great number of orchid
species have been developed commercially as potted
flowering crops with an annual market growth rate of 30 %
(Wang 2004). Among these, the monopodial epiphytic
Phalaenopsis, one of the most popular orchids, is only avail-
able in the retail markets when in bloom. Over the past
decades, a large pool of cultivars with new traits and pheno-
typic variation has been generated via traditional breeding.

Great advances in tissue culture techniques have also
allowed mass production of disease-free orchid plantlets from
seeds or vegetative tissues. One of the major problems in
orchid production is that 1-year-old tissue-culture plantlets
require at least 16–24 months of vegetative growth for the
leaf span to reach a minimum diameter of 25 cm (Konow and
Wang 2001; Runkle et al. 2007). The ability of Phalaenopsis
to spike and bloom under inducive conditions, e.g., low tem-
peratures, is highly correlated with the size of the plant;
however, fungal infection can greatly reduce plant size. In
addition, common pathogens such as Fusarium oxysporum
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(Beckman 1987), Sclerotium rolfsii (Cating et al. 2009), and
Botrytis cinerea (Wey 1988) cause various unsightly symp-
toms on leaves and roots that, even if the orchid survives the
disease, the quality and growth of orchids are irrevocably
damaged and ruined for the commercial market.

Plant roots are surrounded by the rhizosphere, which con-
tains compounds that are secreted by roots and microbes,
which in turn influences the growth and survival of the organ-
isms (Hinsinger et al. 2009). The interplay between plants and
rhizosphere microorganisms can therefore affect plant growth
and health (Bisseling et al. 2009; Berendsen et al. 2012). In
return, photosynthetic plants secrete up to 21 % of their fixed
carbon to the rhizosphere as nutrients, feeding the microflora
and influencing their metabolic activity and diversity (Mendes
et al. 2011). For all or part of their life cycle, orchids are
obligatorily dependent on their mycorrhizal partners in nature.
For example, orchid seed is less likely to germinate in the
absence of mycorrhizal fungi under natural conditions
(Burgeff 1959), and orchid plants depend on the symbionts
to gain access to organic and mineral nutrients by increasing
nutrient absorption and translocation to plants via extraradical
hyphae (Arditti 1992; Rasmussen 1995; Smith and Read
2008). Studying the microbiome of orchid roots enables one
to understand the complexity of plant–microbe interactions
associated with plant health and growth, thus opening new
avenues to increase orchid quality and productivity.

Although scientists have traditionally depended on in vitro
and in vivo culturing to explore fungal communities, most
species remain unculturable, and rare strains can be easily
unexploited in culture (Kaeberlein 2002). Technically opti-
mizing culture conditions for individual species, especially
when the species composition of a community remains un-
known, can be time-consuming and difficult, especially to
induce sporulation. In addition, direct observation of fungal
morphotypes via isolation of a single peloton in roots requires
expertise for accurate interpretation and is very time-
consuming. DNA barcodes, biochemical markers, and analy-
sis of acyl chain composition in membrane-phospholipids also
provide powerful tools for studyingmicrobial ecology without
conventional culture (Alef and Nannipieri 1995). Of these
methods, DNA barcoding is a powerful tool to identify species
using sequences for gene regions that are conserved across
greatly diverse taxonomic groups (Hebert and Gregory 2005;
Schoch et al. 2012). Nuclear ribosomal RNA (nrRNA) is the
most abundant RNA encoded by ribosomal RNA (rRNA)
genes. High conservation in the genes thus provides a frame-
work for assigning sequences to genera and species for inves-
tigations of microbial community diversity (Rosselló-Mora
and Amann 2001; Hirsch et al. 2010). Eukaryotic nrRNA
barcodes include large subunit 28S rRNA (nrLSU) gene,
small subunit 18S rRNA (nrSSU) gene, and the internal
transcribed spacer (nrITS) rDNA plus the 5.85S gene
(Druzhinina et al. 2005; Kõljalg et al. 2005). Among these

regions, nrITS is the most effective discriminator of fungal
species, and the nrLSU is also very effective. The nrSSU,
despite its prominence in assessing bacterial community, is
too conserved for fungi (Tringe and Hugenholtz 2008; Schoch
et al. 2012).

With the invention of next-generation sequencing (NGS),
fungus-specific barcoding primers can be used with
metagenomics, a huge-scale nucleotide-sequence-based tool,
to analyze microbial communities regardless of an organism’s
culturability (Cowan et al. 2005). The tool provides high
throughput sequencing of PCR amplicons from a single
DNA extraction and estimates of the relative abundance of
the organisms detected (Hirsch et al. 2010). However, because
a single barcode is limited in representing the panorama of a
microbial community, combinations of multiple barcodes
have thus been recommended (DeSalle et al. 2008). Based
on the evaluation of Schoch et al. (2012), we selected four
nuclear ribosomal markers, two nrITS regions (ITS1/2 and
ITS3/4) and two in the nrLSU region (nrLSU-LR and nrLSU-
U) (Vilgalys and Hester 1990; Wu et al. 2002). The large
subunit of the mitochondria ribosomal region (mtLSU) and
the sixth subunit of mitochondrial ATPase (mtATP6) (Zeng
et al. 2004; Grubisha et al. 2012) have also been adopted as
markers.

In this study, we deciphered the microbiome of cultivated
orchid roots based on amplicon-based metagenomics. Using
multiple barcodes, we investigated the taxon diversity of the
fungal community and examined the consistency among
barcodes in uncovering the composition of the fungal flora
and the ecological interactions between fungal endophytes
and orchids. We also compared traditional Sanger sequencing
of full-length nrITS with NGS techniques. A rank-scoring
strategy was also developed to integrate the information on
species composition across barcodes.

Materials and methods

Plant materials and DNA extraction

Phalaenopsis KC1111 (Phalaenopsis Taisuco Snow ×
Doritaenopsis White Wonder) was obtained from the Taiwan
Sugar Corporation (Taisuco) and grown in the greenhouse of
National Cheng Kung University in Tainan, Taiwan. Plants
were watered once a week without any pesticide or fertilizer.
Microbial contamination from the potting media was elimi-
nated by sterilizing the roots from five individuals of
Phalaenopsis KC1111 in 2 % NaOCl for 15 min with five
subsequent washes with water (Zelmer et al. 1996). These
tissues were ground into powder with liquid nitrogen. Total
genomic DNAs were extracted by using a modified
cetyltrimethylammonium bromide (CTAB) method (Doyle
and Doyle 1987).
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Gene cloning and Sanger sequencing

Full-length nrITS genomic DNA region, a marker often used
for identifying fungi (Nilsson et al. 2008), was PCR amplified
using the ITS1/ITS4 primer pairs (Wu et al. 2002) in a 50 μL
reaction mixture containing 25 μL Taq DNA Polymerase 2×
Master Mix Red (Ampliqon, Denmark), 5 μL forward and
reverse primers (ITS1 and ITS4, 2 ng/μL, Table S1) each, and
5 μL genomic DNA (2 ng/μL). The PCR cycling scheme
consisted of one cycle of 94 °C/3 min; 35 cycles of 94 °C/30 s,
55 °C/37s, 72 °C/30 s; and a final extension at 72 °C/10 min.
PCR products of ~650 bp were purified with a Gel/PCR DNA
Fragment Extraction Kit (Geneaid, Taiwan), ligated into the
pGEM-T Easy Vector (Promega, USA), and used to transform
DH5α competent cells (Yeastern Biotech, Taiwan). Clones
were sequenced with an ABI PRISM 3730 DNA Sequencer
(ABI Big Dye Terminator Cycle Sequencing Kit, Perkin-
Elmer). The obtained sequences were used in a BLASTsearch
against the NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
database with default blastn settings and assigned to specific
taxa using MEtaGenome Analyzer (MEGAN) software
(Huson et al. 2011). With MEGAN software, the lowest
common ancestor (LCA) algorithm was used for taxonomic
classification, with the required parameters of the LCA as-
signment set as minimum support=1, minimum score=500,
top percentage=1.

Metagenomic barcoding of the fungal community in orchid
roots

Six DNA fragments derived from four DNA regions, namely,
nrITS (ITS1/2 and ITS3/4), nrLSU (LR and U), mitochondrial
large subunit rDNA (mtLSU), and mitochondrial ATPase
subunit 6 (mtATP6), were PCR-amplified using genomic
DNA isolated from roots of cultivated Phalaenopsis
KC1111. PCR primers and annealing temperatures are listed
in Table S1. Amplification was conducted as described in the
gene cloning section. All PCR products of ca. 250–300 bp
were purified, pooled, and sequenced with Illumina GAIIx
high-throughput paired-end sequencing to survey the compo-
sition of fungal community. Raw reads were sorted into six
categories according to the primer sequences, and the reads
with an N residue in the sequences were discarded. Sorted
sequences were merged to haplotypes for computing the copy
numbers, and single-copy haplotypes were removed to lessen
the effect of sequencing errors. These haplotypes were further
clustered into operational taxonomic units (OTUs) using the
BLASTClust program in the standalone BLAST v2.2.26
package of the NCBI. Because the average minimal diver-
gence between fungal species is around 2.5–3 % (Seena et al.
2010; Stockinger et al. 2010), the stringency of clustering was
set with two parameters at 97 % similarity and 80 % coverage
between sequences and referred to as the average minimal

divergence of species between fungi. From reads sorting,
singleton removal, to OTU generation, all steps were conduct-
edwith our own Perl scripts. BLASTanalyses were performed
on all reads against the NCBI nucleotide database, and the
results were further processed for taxonomic assignations
using MEGAN. An optional score adjustment was used when
paired reads matched the same species. The required param-
eters of the LCA assignment were set as minimum support=2,
minimum score=80, top percentage=1 (Murray et al. 2011;
Montaña et al. 2012). Classification results were manually
checked to correct the ambiguous assignation caused by syn-
onyms for fungal species or an ambiguous annotation in the
NCBI database.

Evaluating biodiversity based on metagenomic data

As recommended by Haegeman et al. (2013), Shannon’s and
Gini-Simpson’s diversity indices (Shannon 1948; Rao 1982)
were adopted to estimate the alpha diversity in the fungal
community. Shannon’s index is affected by the species num-
ber and their equitability, or evenness. A greater number of
species and an even distribution of abundances result in an
elevated Shannon’s diversity index. The maximum Shannon’s
diversity index for a sample indicates that all species are
nearly equally abundant. The Gini-Simpson’s diversity index
is measured as the probability that two individuals randomly
selected from a sample belong to the same species, with a
range from 0 to 1. Value of 0 indicates lack of diversity, i.e.,
one dominant species or taxon in the community, and 1
suggests that the community contains an infinite number of
taxa with all taxa present equally. Before alpha-diversity indi-
ces were calculated, multiple rarefactions were performed
with our own Perl scripts. All fungal reads from each marker
were resampled starting at the depth of 1,000 reads, stepping
up to 385,000 reads with increments of 1,000, and ten repli-
cates were done at each sampling depth. For illustrating fungal
diversities, taxonomic relationships of all detected fungal
genera were converted to the Newick format and uploaded
to the web-based tool Interactive Tree Of Life v2.2 (Letunic
and Bork 2011), and the taxonomic trees for each barcode and
for all barcodes combined were generated.

Estimation of the taxon abundance based on copy numbers
of PCR-amplified DNA reads for a mixture of homologous
genes in a multi-template PCR can be biased due to the
differences in the primer binding energy to the target
(Kanagawa 2003). Consequently, the taxon diversity and pro-
portion of any given operational taxonomic unit (OTU) in the
fungal community are expected to differ when using different
sets of DNA barcodes. In this study, the percentage of reads
for a taxon was calculated by dividing the total reads of fungi
generated by individual barcodes (Table S3). Because of the
bias in the taxonomic assignations of mtATP6, that was re-
stricted to the class Agaricomycetes except for six reads, we
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excluded mtATP6 from estimating species abundance with
multiple barcodes. The percentage of reads for each of the
genera generated from five barcodes (ITS1/2, ITS3/4, nrLSU-
LR, nrLSU-U and mtLSU) was then transformed to a rank
score based on the abundance of each genus in the community
using the formula 20−19 (rank−1)/(N−1). The ranks (1, 2,
3…to N) represent the order of abundance (percentage of
reads) for all taxa; thus, a taxon with rank 1 is most abundant
and receives the highest rank score (20). When several taxa
have the same abundance, the highest rank of these taxa was
used as representative. The highest rank score was set to 20 for
a given taxon having the highest number of reads (rank=1),
and the lowest rank score was set to 1 for a given taxon having
lowest number of reads (rank=N).

Results

Phylogenetic diversity of fungal community based on PCR
cloning and Sanger sequencing of ITS1/ITS4

NrITS was amplified using the ITS1/ITS4 barcode for ana-
lyzing the composition of the endophytic fungal community
in the orchid roots. Of the 500 nrITS sequences obtained and
analyzed, a BLAST search assigned 76.4 % of the sequences
to fungi, of which only 19 genera (29 taxa) were identified
(Table 1). The top 10 most abundant fungal taxa were
Penicillium sp. (20.0 %), Trechispora farinacea (17.2 %),
Leotiomyceta (12.0 %), Exophiala (6.6 %), Fusarium solani
(4.4 %), Cladosporium sp. (3.6 %), Epulorhiza sp. Van44
(2.4 %), Alternaria sp. (2.0 %), Leucocoprinus birnbaumii
(2.0 %), and Sporothrix inflata (1.2 %).

Efficiency of six barcoding markers in fungal identification
by metagenomics

In total, 27,099,433 PE reads were obtained and sorted ac-
cording to the six markers from the raw sequencing data. After
single-copy haplotypes were removed, 21,009,068 (77.5 %)
PE reads remained and were further clustered into OTUs.
Among these markers, nrLSU-U yielded the most reads
assigned to fungi (90.7 % of 6,636,430), followed by mtLSU
(69.7 % of 8,132,397), mtATP6 (99.3 % of 2,187,555),
ITS1/2 (86.1 % of 1,504,231), ITS3/4 (79.1 % of 649,608),
and nrLSU-LR (20.3 % of 1,898,847). No correlation existed
between the read numbers and the number of assigned fungal
OTUs. The coverage (number of reads/number of OTUs) of
markers ranged from 1,338× of nrLSU-LR to 36,191× of
mtATP6. Taxon assignation using aMEGAN analysis showed
that 32.8–59.5 % of OTUs could be assigned to fungi, except
for mtATP6 (12.0 %) (Table 2). In contrast, 40.6 % of OTUs
amplified with ITS1/ITS2, 22.7 % with ITS3/ITS4, 5.7 %
with nrLSU-LR, 26.6 % with nrLSU-U, 34.4 % with mtLSU

and 83.8 % with mtATP6 were not assignable to any organ-
isms based on the BLAST searches (Table 2). Although most
reads for mtATP6 were assigned to fungi, 96.2 % of these
reads belonged to one OTU (Ceratobasidium sp. CBS
189.90).

Fungal diversity in orchid roots detected with six barcoding
markers

Six phyla (Ascomycota, Basidiomycota, Chytridiomycota,
E n t o m o p h t h o r o m y c o t a , G l o m e r o m y c o t a ,
N e o c a l l im a s t i g omyco t a ) a n d t h r e e s u b p hy l a
(Kickxellomycotina, Mucoromycotina, Motierellomycotina)
were detected in Phalaenopsis roots (Tables 3, S2). Both
major phyla, Ascomycota and Basidiomycota, were detected
by all markers, while the remaining phyla/subphyla were only
detected with the markers for the nrITS and nrLSU regions,
revealing insufficiencies of mitochondrial markers.
G lome romyco t a , Neoca l l ima s t i gomyco t a , and
Kickxellomycotina were only observed with single markers,
whereas Chytridiomycota, Entomophthoromycota,
Mortierellomycotina, and Mucoromycotina were detected
with two or more markers. As indicated, Ascomycota and
Basidiomycota were dominant. All nrITS markers yielded a
higher abundance of Ascomycota, while nrLSU and mito-
chondrial markers yielded a higher abundance of Basidiomy-
cota (Fig. 1a). At the class level, the dominant classes were
Dothideomycetes (Ascomycota) , Eurotiomycetes
(Ascomycota), Sordariomycetes (Ascomycota), and
Agaricomycetes (Basidiomycota), which nevertheless
displayed high variances in the relative abundance across
markers (Fig. 1b). For example, the detection of
Dothideomycetes was mostly restricted to ITS1/2, low abun-
dance of the Sordariomycetes was observed when using
nrLSU-LR, and the abundance of Agaricomycetes ranged
from 20 to 94 % across five markers. At the order level, 34
orders were identified with markers of ITS1/2, 31 for nrLSU-
LR, 35 for ITS3/4, 46 for nrLSU-U, 19 for mtLSU, and 6
orders for mtATP6. At the generic level, 76 genera were
detected with markers for ITS1/2, 38 for ITS3/4, 33 for
nrLSU-LR, 111 for nrLSU-U, 33 for mtLSU, and 8 for
mtATP6 (Table 3). With all markers integrated, 10 phyla/
subphyla, 19 classes, 64 orders, and 205 genera were detected
in this study (Fig. 2, Table 3).

Multiple rarefactions and alpha-diversity estimations

As the total numbers of sequences varied across the six
markers, from the lowest of 385, 278 with ITS3/4 to the
highest of 6,018,234 with nrLSU-LR, multiple rarefactions
were performed on markers to minimize the bias resulting
from unequal sequencing depths. ITS1/2, ITS3/4, and
nrLSU-U showed similar resolutions at low sequencing
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depths, as indicated by the curves of these markers that over-
lapped when the rarefied number was less than 100,000
(Fig. 3). Nevertheless, as the number of sequences increased,
nrLSU-U demonstrated the best resolution (442.4 OTUs of
385,000 sequences) compared with other markers, followed
by ITS1/2 (371.4 OTUs) and ITS3/4 (333.8 OTUs). We
further estimated the alpha diversity of the fungal community
with the rarefied data set. The two alpha diversity indicators,
Shannon’s and Gini-Simpson’s indices, were adopted due to

their stability and robustness in metagenomic analyses
(Haegeman et al. 2013). Table 4 shows the rarefied Shannon’s
and Gini-Simpson’s indices for floras uncovered by markers,
in which ITS1/2 (2.49 and 0.85 for Shannon’s and Gini-
Simpson’s indices, respectively) displayed higher specie rich-
ness than ITS3/4 (2.02 and 0.78), nrLSU-U (1.83 and 0.76),
nrLSU-LR (1.47 and 0.68), mtLSU (1.09 and 0.58), and
mtATP6 (0.18 and 0.07). Both indices showed that the nrITS
regions had better resolution in width and depth in uncovering

Table 1 Taxonomic assignations and counts of endophytic species in PhalaenopsisKC1111 identified by gene cloning and Sanger sequencing of
ITS1/4 regions

Phylum Class Order Genus Taxonomic assignation Counts

Ascomycota Leotiomyceta 60

Ascomycota 2

Dothideomycetes Capnodiales Cladosporium Cladosporium 18

Devriesia Devriesia strelitziicola 1

Pleosporales Thyridaria Thyridaria 1

Alternaria Alternaria 10

Eurotiomycetes Eurotiomycetes 3

Chaetothyriales Cladophialophora Cladophialophora bantiana 1

Exophiala Exophiala 32

Exophiala moniliae 1

Eurotiales Penicillium Penicillium 100

Saccharomycetes Saccharomycetales Saccharomycetales 2

Sordariomycetes Hypocreales Sarocladium Sarocladium strictum 1

Trichoderma Trichoderma 2

Fusarium Fusarium solani 22

Fusarium 2

Ophiostomatales Sporothrix Sporothrix inflata 6

Basidiomycota Erythrobasidiales Occultifur Occultifur aff. externus IMUFRJ 52019 1

Occultifur externus 1

Rhodotorula Rhodotorula calyptogenae 1

Sporidiobolales Sporidiobolales 1

Agaricomycetes Agaricales Leucocoprinus Leucocoprinus Birnbaumii 10

Cantharellales Epulorhiza Epulorhiza sp. Van44 12

Polyporales Nigroporus Nigroporus vinosus 1

Trechisporales Trechispora Trechispora farinacea 86

Trechispora 2

Agaricostilbomycetes Rhodotorula Rhodotorula bloemfonteinensis 2

Tremellomycetes Tremellales Cryptococcus Cryptococcus podzolicus 1

Other organisms Alveolata 5

Bacteria 1

Eukaryota 6

Metazoa 5

Viridiplantae 40

Not assigned 61

Total 500
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the biodiversity than nrLSU and mitochondrial regions
(Table 4).

Data analysis using rank scoring to evaluate fungal diversity

The taxonomic assignment for the ten most abundant OTUs
for each marker is shown in Table S4. Unexpectedly, different
dominant species were identified among markers. The most
abundant OTUs were assigned as Alternaria, Penicillium,
Trechispora, Trechispora, Serpula, and Ceratobasidium de-
tectedwith ITS1/2, ITS3/4, nrLSU-LR, nrLSU-U, mtLSU and

mtATP6, respectively. As each marker only represented a part
of the fungal community, the data across these markers must
be combined to get an overview of the microbiome. Here, a
rank-scoring strategy was developed for integrating the infor-
mation on species composition obtained from multiple
markers. Value 0 suggests no reads detected. Abundance of
each genus in the community was calculated by summing the
rank scores for the five barcodes used; results for mtATP6
were excluded due to its biased detection toward
Agaricomycetes. In the rank-scoring, the top 15 genera were
Penicillium (including teleomorph Talaromyces), Sporothrix

Table 2 Summary of sequencing reads and operational taxonomic unit (OTU) numbers from all barcodes

ITS1/2 ITS3/4 nrLSU-LR nrLSU-U mtLSU mtATP6

Reads

Total 2,050,657 948,313 2,854,004 9,249,520 9,454,223 2,542,716

Processed to OTU 1,504,231 649,608 1,898,847 6,636,430 8,132,397 2,187,555

Fungi 1,294,385 513,844 385,244 6,018,234 5,670,611 2,171,475

Not assigned 149,192 26,313 2,735 551,261 746,746 15,482

Other kingdoms 60,654 109,451 1,510,868 66,935 1,715,040 598

OTU

Total 1,177 746 878 1,997 1,176 501

Fungi 512 (43.5 %) 364 (48.8 %) 287 (32.7 %) 1,189 (59.5 %) 387 (32.9 %) 60 (12.0 %)

Not assigned 478 (40.6 %) 169 (22.7 %) 50 (5.7 %) 532 (26.6 %) 404 (34.4 %) 420 (83.8 %)

Other kingdoms 187 (15.9 %) 213 (28.6 %) 541 (61.6 %) 276 (13.8 %) 385 (32.7 %) 21 (4.2 %)

Table 3 Summary of taxonomic
assignations and species diversity
using six markers

Assignation ITS1/2 ITS3/4 nrLSU-LR nrLSU-U mtLSU mtATP6

Fungal reads 1,294,385 513,844 385,278 6,018,234 5,670,611 2,171,475

Assigned to phylum level 1,285,639 504,494 322,245 6,012,781 5,867,195 2,171,471

Assigned to order level 967,973 130,424 319,267 4,267,361 5,618,342 2,170,485

Assigned to genus level 871,208 73,730 283,860 4,025,934 5,616,600 2,170,410

Fungal OTUs 512 364 288 1,189 387 60

Assigned to phylum level 492 345 252 1,163 376 58

Assigned to class level 405 248 208 943 339 57

Assigned to order level 381 224 159 822 319 50

Assigned to genus level 260 132 112 487 260 43

Phylum/subphylum

Ascomycota 354 257 123 883 328 2

Basidiomycota 130 74 117 267 48 56

Chytridiomycota 2 4 2

Entomophthoromycota 2 2

Glomeromycota 2

Neocallimastigomycota 1

Kickxellomycotina 1

Mortierellomycotina 7 3 3 6

Mucoromycotina 1 4 2 5

Identified orders (Total 64) 34 31 35 46 19 6

Identified genera (Total 201) 76 38 32 111 33 8
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(including teleomorph Ophiostoma), Trechispora, Fusarium
(including teleomorph Gibberella), Candida, Cladosporium,
Mortierella, Exophiala, Meira, Aspergillus, Devriesia,
Leucocoprinus, Mycospharella, Trichoderma (including
teleomorph Hypocrea), and Cladophialophora, all having
rank scores between 40.34 and 84.21 (Fig. 4, Table S5).

Discussion

DNA barcoding for species identification

Although molecular techniques using cloning and Sanger
sequencing largely avoid the difficulties of microbial culture
or morphotype identification, in the present study, sequencing
the ITS1/4 region to investigate the fungal species diversity in
orchid roots only identified 29 taxa from 500 clones. Even so,
of the top 10 abundant genera (Table 1), nine were also
recognized as the dominant genera in the metagenomic anal-
yses (Table S5): Penicillium (20.0 %; meta-rank 2 in the NGS
approach), Trechispora (17.6 %; meta-rank 3), Exophiala
(6.6 %; meta-rank 8), Fusarium (4.8 %; meta-rank 4),
Cladosporium (3.6 %; meta-rank 6), Alternaria (2.0 %;
meta-rank 17), Leucocoprinus (2.0 %; meta-rank 12),
Sporothrix (1.2 %; meta-rank 1), and Trichoderma (0.4 %;
meta-rank 14). High repeatability in both methods reflects that
Sanger sequencing may be capable of detecting common taxa.
However, this conventional molecular tool lacks breadth in
screening the microbial community, as indicated by the

detection of a wide range of classes/orders of fungi
through the metagenomic analyses with NGS; for the
constituent species, 462 ITS1/2-OTUs (90.2 %) and 342
ITS3/4-OTUs (94.0 %) were minor with frequencies
lower than 0.2 %, a frequency equivalent to 1 detection
from 500 clones, reflecting the power of deep sequenc-
ing (Mardis 2008).

Primer preference undoubtedly biases estimations of the
species composition in a community (Bellemain et al. 2010).
In this study, up to one third of the OTUs detected using the
mtLSU were assigned to bacteria, likely from the low speci-
ficity of the primers for fungi (Table 2). The mtLSU primers
were designed for conserved regions of the large subunit
rDNA of the mitochondrion, which share high similarities
with bacterial ribosomal components (Kanagawa 2003). Like-
wise, the low efficiency of the nrLSU-LR barcode in detecting
fungal species may also have resulted from low primer spec-
ificity, as shown by the fact that ~80 % of the reads were
assigned to plants instead of fungi. Even so, the nrLSU-LR
was useful for identifying 17 unique genera (Table S4). An-
other extreme was with the mtATP6 amplification, that
yielded all of the reads belonging to the Basidiomycota,
95.5 % of which were assigned to Ceratobasidium, a mycor-
rhizal genus associated with orchids (Irwin et al. 2007). On the
other hand, 83.8 % of the mtATP6 OTUs representing 0.7 %
of the reads remained unidentified likely due to insufficient
information of mtATP6 sequences. All of these facts revealed
high inconsistency across barcodes. Apparently, using one or
few barcodes likely increases the risks of misidentifying the

Fig. 1 Read distribution of
sequences according to phylum
(a) and class (b) of fungi in roots
of greenhouse-grown
Phalaenopsis KC1111. Bar
colors denote the taxon detected
by each marker
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species composition in a microbial community, although
nrITS is one of the best barcodes for fungal species discrim-
ination (Schoch et al. 2012). Using multiple barcodes is there-
fore necessary and has been strongly recommended (Nilsson
et al. 2008; Gazis et al. 2011). Among the barcodes utilized in
this study, ITS1/2, ITS3/4, and nrLSU-U were the most com-
petent in uncovering the diversity of the fungal community in
Phalaenopsis roots (Fig. 1), while mitochondrial markers

(mtLSU and mtATP6) yielded a low alpha diversity with
rarely detected genera (Tables 3 and 4).

Species composition and ecological roles of constituent fungi
within orchid roots

Orchid roots represent an ecosystem that fosters a high diver-
sity of microbial species. Noticeably, genetic barcodes

Fig. 2 Hierarchical tree representing taxonomic relationships of fungal
genera detected in roots of greenhouse-grown Phalaenopsis. Branch
colors indicate the classes (in boxes) of the OTUs. The height of the bars

in the circle outside the branch tips corresponds to the number of OTUs
within genera. The key to bar color for the markers is at the top right
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identified different floristic compositions at the class level
(Fig. 2) and different common species from the same root
community (Table S4). For example, for various barcodes, the
most common species (with percentage reads) were as fol-
lows: ITS1/2, Alternaria sp. (up to 30.4 %); ITS3/4,
Penicillium sp. (37.8 %); nrLSU-LR, Trechispora farinacea
(48.9 %); nrLSU-U, Trechispora sp. (39.2 %); mtLSU,
Serpula sp. (64.7 %). Such inconsistencies across barcodes
create doubts that genetic markers can accurately uncover the
species composition of an ecological community. Our data
show that different barcode primers tend to have different
annealing kinetics to the target DNA in PCR with multi-
template samples. In addition, fungal DNA sequence infor-
mation for barcoding in GenBank is incomplete, thus lower-
ing the power to identify species (Schloss et al. 2011; Pinto
and Raskin 2012). Nonetheless, taxa frequently identified
across barcodes were likely to represent dominant elements
in the fungal community.

Since taxa were preferentially detected across different
barcodes, the species richness cannot be simply estimated by
averaging the read percentages of taxa (e.g., genus) from each
barcode. For example, as high as 65 % of the reads amplified
with mtLSU were assigned to Serpula, which would account
for the second-most abundant genus by average (13.0 %)
across five barcodes, whereas Fusarium, Penicillium, and
Sporothrix, detected with five barcodes, turned out to be minor
constituents, having average read percentages of 9.0 %, 8.0 %,
and 3.3 %, respectively (Table S3). By assigning the OTUs
into ranks based on the relative abundance (Table S5) using
our rank-scoring, we could minimize the calculation bias

encountered with data combination. With this new approach,
multiple barcodes are easy to integrate for estimating species
richness.

Nine of the ten most abundant genera have been reported as
fungi that promote the growth of plants, including Trechispora
(meta-rank 3) and Mortierella (meta-rank 7), that are likely
involved in mycorrhizal formation (Ochora et al. 2001;
Rinaldi et al. 2008) (Fig. 4, Table S2). Although Dearnaley
et al. (2012) did not report any ecological functions for these
fungi, they are potentially useful for horticulture. Given that
the nature of the interactions between these fungi and orchids
is uncertain, the role of Trechispora farinacea, a dominant
species in the root community (Table S4), needs to be further
examined using inoculation experiments. Cultural conditions
should be optimized specifically for these symbiotic fungi.

Of the 21 other mycorrhizal genera identified in the present
study (Tables 1, S2), Tulasnella (anamorphic Epulorhiza) and
Ceratobasidium are common symbionts with orchids (Suárez
et al. 2006; Irwin et al. 2007; Otero et al. 2007; Dearnaley
et al. 2012; Graham and Dearnaley 2012). Tulasnella is in-
volved in the symbiotic germination of Chiloglottis aff.
jeanesii and C. valida (Roche et al. 2010), whereas an isolate
of Ceratobasidium is potentially useful for the biocontrol of
Erwinia chrysanthemi, the bacterium causing soft rot in
Phalaenopsis (Wu et al. 2011). Thus, Tulasnella and
Ceratobasidium spp. are likely to be important mycorrhizal
species coexisting with Phalaenopsis. Although more than
80 % of the land plant families are thought to have symbiotic
relationships with arbuscular mycorrhizal fungi (AMF,
Glomeromycota) (Kawaguchi and Minamisawa 2010),
Acaulospora was the only AMF genus that we detected.
Failing to detect other AMF may be ascribed to the short read
length with Illumina sequencing (cf. Stockinger et al. 2010).

Moreover, Penicillium species (meta-rank 1 here) are com-
mon endophytes in plants (Vega et al. 2006), and some species
can improve phosphate solubility or produce gibberellic acid
to stimulate plant growth (Wakelin et al. 2007; Khan et al.
2008). Fungi may also function as biocontrol agents (e.g.,
Meira and Candida; Nguyen et al. 2011) or nematode preda-
tors (e.g., Dactyllela and Arthrobotrys; Schenck et al. 1977).
Nematodes, common invertebrates in orchids, often cause leaf
yellowing and reduce plant vigor (Kuehnle 2006). Such
nematophagous fungi may thus play a critical role in control-
ling nematode infection in orchids. Using symbiotic fungi for
controlling disease outbreak or improving the resistance to
pathogens has been demonstrated for orchids and crops (cf.
Lee et al. 2009; Wu et al. 2011; Mosquera-Espinosa et al.

Fig. 3 OTU accumulation curves of multiple rarefactions with six
markers sequenced with Illumina GAIIx

Table 4 Indices of alpha diversi-
ty across markers Diversity index ITS1/2 ITS3/4 nrLSU-LR nrLSU-U mtLSU mtATP6

Shannon 2.49 2.02 1.47 1.83 1.09 0.18

Gini-Simpson 0.85 0.78 0.68 0.76 0.55 0.07
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2013). Another benefit might be conferred by Sporothrix
(meta-rank 2); its abundance is likely associated with the good
growth of orchids in Sphagnum moss, a popular potting
material in the orchid industry in which Sporothrix is frequent-
ly found (Zhang and Andrews 1993; Feeney et al. 2007).

Among the well-documented, common pathogenic fungi
that infect orchids, Fusarium (meta-rank 4) and Colletotrichum
(meta-rank 26) were also detected in this study. Symptoms may
be severe enough to impair the growth of Phalaenopsis, e.g.,
some Fusarium species lead to wilting of orchids (Benyon et al.
1996; Divakaran et al. 2008), and Colletotrichum species cause
anthracnose disease (Yang et al. 2011). However, pathogenic
species do not always trigger necrotic symptoms because of a
lag in symptom expression early during infection (Newton et al.
2010) or the presence of antagonistic species that repress path-
ogenicity (Schulz and Boyle 2005).

Conclusions

Metagenomic analysis with NGS techniques provides not only a
vast amount of data of barcode sequences, but deep insights into
the species composition of a fungal community. Here, multiple
barcodes were used to resolve the taxa within a microbial
community; 152 genera (73.8 % OTUs) appeared only in the

barcoding with single markers, indicating that no single barcode
was able to disclose the diverse microflora comprehensively. Of
the six barcodes, ITS1/2, ITS3/4, and nrLSU-U worked the best
to decipher the microbiome in Phalaenopsis roots. Our
metagenomic analyses suggested that species of the mycorrhizal
Trechispora and Mortierella might play some key roles in pro-
moting orchid vigor. Methodological approaches, e.g., in silico
simulations on primer preferences, deciphering mock communi-
ties with multiple markers, and isolating potentially useful fungi
for whole genome sequencing, can be conducted in the future.
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