34 research outputs found

    Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H2 or CO.

    Get PDF
    Formic acid is considered a promising energy carrier and hydrogen storage material for a carbon-neutral economy. We present an inexpensive system for the selective room-temperature photocatalytic conversion of formic acid into either hydrogen or carbon monoxide. Under visible-light irradiation (λ>420 nm, 1 sun), suspensions of ligand-capped cadmium sulfide nanocrystals in formic acid/sodium formate release up to 116±14 mmol H2 g(cat)(-1) h(-1) with >99% selectivity when combined with a cobalt co-catalyst; the quantum yield at λ=460 nm was 21.2±2.7%. In the absence of capping ligands, suspensions of the same photocatalyst in aqueous sodium formate generate up to 102±13 mmol CO g(cat)(-1) h(-1) with >95% selectivity and 19.7±2.7% quantum yield. H2 and CO production was sustained for more than one week with turnover numbers greater than 6×10(5) and 3×10(6), respectively.This work was supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group, the EPSRC (EP/H00338X/2 to ER), the Isaac Newton Trust, the German Research Foundation (MFK), and the Advanced Institute for Materials Research-Cambridge Joint Research Centre (KLO). XPS spectra were obtained at the National EPSRC XPS User's Service (NEXUS) at Newcastle University, an EPSRC Mid-Range Facility.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150623

    Photoelectrocatalytic Surfactant Pollutant Degradation and Simultaneous Green Hydrogen Generation

    Get PDF
    For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO3_3/BiVO4_4 photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO3_3/BiVO4_4 films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of H2_2O2_2 from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 μmol/cm2^2 and 71.81 μmol/cm2^2 of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential

    Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water.

    Get PDF
    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm(-2) at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination.The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7-PEOPLE-2013-IEF under REA Grant Agreement No. (623061; M.C-Q.). This work was also supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development) and the OMV Group (J.W., M.F.K. and E.R.); L.M.P.-O. would like to thank the Engineering and Physical Sciences Research Council of the UK (EPSRC), the Cambridge Home European Scholarship Scheme (CHESS) and King Abdulaziz City for Science and Technology (KACST)

    ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H2 Evolution in Water

    Get PDF
    A precious-metal- and Cd-free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4 )2 co-catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol H 2  gZnSe -1  h-1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm-2 , λ>400 nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm-2 ), up to 149±22 mmol H 2  gZnSe -1  h-1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around -10 μA cm-2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H2 generation.Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group, the EPSRC NanoDTC, EPSRC Underpinning Multi-User Equipment Grant (EP/P030467/1), the Erasmus+ program (D.W.), the Erasmus program (A.S.) and the World Premier International Research Center Initiative, MEXT, Japa

    Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.

    Get PDF
    The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry

    Facile Synthesis of Gram-Scale Mesoporous Ag/TiO<sub>2</sub> Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation

    Get PDF
    This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g–1 h–1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight
    corecore