

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: Angewandte Chemie International Edition

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa48697

Paper:

Kuehnel, M., Creissen, C., Sahm, C., Wielend, D., Schlosser, A., Orchard, K. & Reisner, E. (2019). ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H2 Evolution in Water. *Angewandte Chemie International Edition*, *58*(15), 5059-5063. http://dx.doi.org/10.1002/anie.201814265

Released under the terms of a Creative Commons Attribution License (CC-BY).

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

International Edition: DOI: 10.1002/anie.201814265 German Edition: DOI: 10.1002/ange.201814265

ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H₂ Evolution in Water

Moritz F. Kuehnel⁺, Charles E. Creissen⁺, Constantin D. Sahm⁺, Dominik Wielend, Anja Schlosser, Katherine L. Orchard, and Erwin Reisner^{*}

Abstract: A precious-metal- and Cd-free photocatalyst system for efficient H_2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni- $(BF_4)_2$ co-catalyst suspended in aqueous ascorbic acid evolve H_2 with an activity up to $54 \pm 2 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ and a quantum yield of 50 ± 4 % ($\lambda = 400$ nm) under visible light illumination (AM 1.5G, 100 mW cm⁻², $\lambda > 400$ nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm⁻²), up to $149 \pm 22 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite $CuCrO_2$ photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on $CuCrO_2$ generate photocurrents of around $-10 \,\mu A \, cm^{-2}$ in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H_2 generation.

Artificial photosynthesis in which solar energy is stored in chemical fuels is a promising strategy for overcoming the temporal mismatch between renewable energy supply and demand.^[1] H₂ is the most prominent example of a solar fuel as it can be generated by photoreduction of aqueous protons by a broad range of photocatalysts.^[2] Among the most active materials are chalcogenide nanocrystals based on CdS and

[*]	Dr. M. F. Kuehnel, ^[+] C. E. Creissen, ^[+] C. D. Sahm, ^[+] D. Wielend,
	A. Schlosser, Dr. K. L. Orchard, Prof. E. Reisner
	Christian Doppler Laboratory for Sustainable Syngas Chemistry,
	Department of Chemistry, University of Cambridge
	Lensfield Road, Cambridge CB2 1EW (UK)
	E-mail: reisner@ch.cam.ac.uk
	Homepage: http://www-reisner.ch.cam.ac.uk
	Dr. M. F. Kuehnel ^[+]
	Department of Chemistry, Swansea University
	Singleton Park, Swansea SA2 8PP (UK)
[+]	These authors contributed equally to this work.
	Supporting information and the ORCID identification number(s) for

 Supporting information and the ORCID identification number(s)
 the author(s) of this article can be found under: https://doi.org/10.1002/anie.201814265.
 Additional data related to this publication are available at the University of Cambridge data repository: https://doi.org/10.17863/CAM.36101 CdSe.^[3] Despite the remarkable activities and stabilities shown by these materials,^[4] the toxicity and carcinogenic nature of cadmium represents a considerable obstacle for their wide-spread application. Carbon-based materials, such as carbon nitride,^[5] carbon dots,^[6] and conjugated organic polymers^[7] have recently been introduced as environmentally benign alternatives. While these materials are inexpensive and usually non-toxic, their performances have yet to match those of Cd-based photocatalysts to achieve high quantum yields for aqueous H₂ production without precious and carcinogenic metals.

Here, we report ZnSe nanorods (NRs) as inexpensive Cdfree light absorbers for efficient H_2 evolution under visiblelight irradiation (Figure 1). The ZnSe NRs exhibit an activity approaching that of Cd-based materials, even without an added co-catalyst. Furthermore, we demonstrate that the high activity of the suspended ZnSe nanocrystals under sacrificial conditions can be translated to heterogeneous conditions by assembling a simple, precious-metal-free photoelectrode from ZnSe nanocrystals immobilized on *p*-type delafossite CuCrO₂.

Figure 1. Schematic representation of the reported ZnSe nanorod photocatalyst system and its application for the construction of a noble-metal-free photocathode (CB: conduction band, VB: valence band, AA: ascorbic acid, DHA: dehydroascorbic acid).

ZnSe is a stable and inexpensive semiconductor with a direct bulk band gap of 2.7 eV,^[8] which enables absorption of near-UV and some visible light. The conduction band (CB) is located at around -1.1 V vs. NHE (pH 0),^[9] providing ample driving force for the reduction of aqueous protons. Despite these favorable properties, ZnSe has received surprisingly little attention for solar fuel generation, unlike its cadmium analogues CdS and CdSe,^[10] Domen and coworkers reported ZnSe/copper indium gallium selenide (CIGS) solid solution-based photocathodes for H₂ evolution^[11] with photocurrents up to 12 mA cm⁻² at 0 V vs. the reversible hydrogen electrode (RHE) and onset potentials of

Angew. Chem. Int. Ed. 2019, 58, 5059–5063 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Wiley Online Library 5059

^{© 2019} The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

+ 0.89 V vs. RHE.^[11b] However, the complex photocathode assembly required a CdS charge extraction layer and a Pt proton-reduction catalyst. While a number of reports have demonstrated the application of ZnSe-based nanomaterials for photocatalytic dye degradation^[12] and water oxidation,^[13] only a few examples of Cd-free ZnSe particles for photocatalytic H₂ generation have been reported, all of which show low activity.^[14]

We prepared ZnSe NRs by injecting trioctylphosphine/Se into an octadecane solution of zinc stearate at 300°C, followed by a 25 min growth period.^[15] Surface modification of the as-prepared stearate-capped ZnSe NRs (ZnSe-St) was achieved by ligand exchange with mercaptopropionic acid to give water-soluble NRs (ZnSe-MPA) and by reactive ligand removal with [Me₃O][BF₄] to give ligand-free NRs (ZnSe-BF₄).^[16] Independent of the surface capping, the NRs are 5.2 ± 0.6 nm in diameter and 30.0 ± 4.8 nm long (aspect ratio 5.8 ± 0.9), as determined from transmission electron microscopy (TEM, Figure S1 in the Supporting Information). Powder X-ray diffraction (Figure S1F) shows that the ZnSe NRs are obtained as a mixture of the zinc blende and wurtzite polymorphs, as previously observed with ZnSe nanorods synthesized by hot injection.^[17] The ZnSe NRs show UVvisible light absorption up to about 440 nm (Figure S2A) and two emission maxima separated by 0.097 eV in their photoluminescence (PL) spectra that can be attributed to differences in the band gaps of the two ZnSe polymorphs (Figure S2B).^[18] Additional emissions at longer wavelengths likely result from trap states as previously observed with ZnSe nanocrystals.^[16a] PL is reductively quenched by adding ascorbic acid (AA, Figure S2C,D).

Figure 2 shows that ZnSe NRs are highly active photocatalysts for the reduction of aqueous protons to H_2 under

Figure 2. Photocatalytic H₂ generation using aqueous ZnSe NRs. A) Ligand-free ZnSe NRs in the presence of different co-catalysts (3 h irradiation). B) Effect of the NR capping ligand. C) ZnSe-BF₄ under different irradiation spectra (1 h irradiation). D) Long-term activity of ZnSe-BF₄ with the photoreactor being purged with N₂ after 20 h. The cumulative amount of H₂ is shown. Conditions unless stated otherwise: 50 mg L⁻¹ ZnSe NRs, 0.4 m AA, pH 4.5, 20 µm Ni(BF₄)₂, 25 °C, 100 mW cm⁻², AM 1.5G, $\lambda > 400$ nm.

visible-light irradiation (AM 1.5G, 100 mW cm⁻², $\lambda > 400$ nm) in the presence of AA. Under optimized conditions (pH 4.5, 0.4 M AA, 50 mg L^{-1} ZnSe, see Table S1 and Figure S3 in the Supporting Information for details on optimizing these parameters), $ZnSe-BF_4$ produced up to $33.6 \pm$ $2.0 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ (Figure 2A). To further enhance the photocatalytic activity of the ZnSe NRs, $Fe(BF_4)_2$, $Co(BF_4)_2$, Ni(BF₄)₂, and K₂PtCl₄ were tested as co-catalysts (Figure 2 A). Ni showed the highest performance increase to $54.3 \pm 1.9 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ at 20 µм, whereas $K_2 PtCl_4$ quenched the photocatalytic activity almost completely. A low performance of Pt as a co-catalyst has been previously observed with ligand-free CdS.^[19] Pre-formed Pt nanoparticles showed some activity, but still lower than without a cocatalyst. Under the same conditions, ligand-capped ZnSe-MPA and ZnSe-St NRs showed a lower H2 generation activity of 45.9 ± 1.4 and $12.1 \pm 2.7 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$, respectively (Figure 2B). This observation agrees with our previous studies, which demonstrated an enhanced H₂ evolution activity of CdS nanocrystals upon ligand removal.^[20] Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm⁻²), ZnSe-BF₄ generates up to $149 \pm 22 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ and $95 \pm 27 \text{ mmol}_{H_2} g_{ZnSe}^{-1} h^{-1}$ in the presence and absence of $Ni(BF_4)_2$, respectively (Figure 2C). The internal quantum yield (IQE) under monochromatic light ($\lambda = 400 \text{ nm}$) was 50.2 ± 3.6 % (35.9 ± 2.6 % external quantum yield, EQE; Supporting Information, Table S2).

Long-term experiments using ZnSe-BF₄ showed that H₂ production is sustained over more than 40 h with a gradual decrease in rate (Figure 2D). This decreasing activity is likely due to accumulation of dehydroascorbic acid (DHA) in solution. Photodegradation of ZnSe is only marginal, since separating ZnSe-BF₄ NRs after 20 h and re-dispersing them in a fresh AA solution largely restored the activity (some material is lost during separation). In contrast, adding fresh ZnSe NRs had no effect on the activity (Supporting Information, Figure S4). Previous work has shown that the AA oxidation product DHA can inhibit the photocatalytic H₂ production.^[21] UV/Vis spectra before and after prolonged irradiation show no degradation apart from an increase in scattering resulting from particle aggregation (Figure S5). Post-catalysis TEM confirms the formation of aggregates with aspherical nanocrystalline features (Figure S6). Inductivelycoupled plasma optical emission spectroscopy (ICP-OES) of ZnSe-BF₄/Ni isolated after 3 h irradiation showed an incorporation of 8.5 ± 2.3 Ni atoms per ZnSe NR (<1% of total added Ni), suggesting in situ formation of a heterogeneous Nibased catalyst on the NR surface.^[22] No H₂ was generated without ZnSe, in the dark, or without an electron donor (Supporting Information, Table S3).

These data demonstrate that ZnSe-BF₄ NRs are efficient and stable light absorbers for aqueous H₂ production, considerably outperforming previous Cd-free ZnSe photocatalysts despite their blue-shifted absorption spectrum compared to CdS. Previous reports have shown that a Pt/ ZnO-ZnSe nanocomposite generated 3 mmol_{H2} g⁻¹h⁻¹ under UV irradiation with 2.54% EQE,^[14a] and CoP-decorated ZnSe nanobelts produced <1 mmol_{H2} g⁻¹h⁻¹ under visiblelight irradiation.^[14b] However, the photocatalytic activities of ZnSe-BF₄ (33.6 \pm 2.0 mmol_{H₂} g_{ZnSe}⁻¹h⁻¹, 25.9 \pm 1.2 % EQE) and ZnSe-BF₄/Ni $(54.3 \pm 1.9 \text{ mmol}_{H_2} \text{ } \text{g}_{\text{ZnSe}}^{-1} \text{h}^{-1}, 35.9 \pm 2.6 \text{ \%}$ EQE) approach those of Cd-based photocatalysts^[23] such as $Cd_{0.25}Zn_{0.75}Se/CoP$ (45.1 mmol_{H2} g⁻¹h⁻¹).^[14b] CdSe quantum dots (QDs) combined with a Ni catalyst were shown to produce H₂ with an IQE of $36 \pm 10\%$.^[24] Higher performances were reported for CdS with different co-catalysts^[25] such as MoS_2 (96.7 mmol_{H2} g⁻¹h⁻¹, 46.9 % EQE),^[25a] Ni₂P $(1200 \text{ mmol}_{H_2} \text{ g}^{-1} \text{h}^{-1}, 41 \%$ EQE),^[25b] and Pt/PdS $(29.2 \text{ mmol}_{H_2} \text{ g}^{-1} \text{h}^{-1}, 93\% \text{ EQE}).^{[25c]}$ Without a co-catalyst, up to 41 $mmol_{\rm H_2}\,g^{-1}\,h^{-1\,[26]}$ and 2.8% $EQE^{[27]}$ were reported for CdS, and 239 $mmol_{\rm H_2}\,g^{-1}h^{-1\,[28]}$ and 65.7% $EQE^{[29]}$ for $Cd_xZn_{1-x}S$. Cd-free alternatives such as CuInS₂-ZnS,^[30] carbon nitride,[31] conjugated polymers,[32] triazine frameworks,^[33] and polymer dots^[34] generally show much lower activities, although a recently reported NaCl/KCl-treated carbon nitride/Pt material achieved up to 60% EQE.^[35]

Having established a good performance and stability of ZnSe nanorods for photocatalytic H₂ production, even in the absence of an added co-catalyst, we aimed to eliminate the sacrificial electron donor AA. The production of low-value H₂ gas at the expense of a sacrificial electron donor is not sustainable unless the electron donor is freely available, for example by photoreforming waste.^[19,36] Instead, a nanocrystal-sensitized photocathode can be assembled, where the nanocrystal provides electrons for the photocatalysis and a *p*-type semiconductor accepts the photogenerated holes, replacing the chemical electron donor. Such systems enable overall water splitting through coupling with a photoanode for water oxidation.^[37]

To this end, we immobilized ZnSe-BF₄ NRs on a CuCrO₂ electrode. CuCrO₂ is a wide-band-gap semiconductor ($E_g \approx 3.1 \text{ eV}$), which crystallizes in a delafossite-type structure. Previous work has shown that modification of CuCrO₂ with an organic dye and a nickel bis(diphosphine) catalyst enabled visible-light-driven proton reduction in aqueous solution.^[38] The characteristic high hole mobility, *p*-type conductivity, and straightforward synthesis from abundant materials using solution processing techniques make CuCrO₂ a suitable candidate for the coupling with ZnSe in a hydrogen-generating photocathode.

The ZnSe nanorods were immobilized by drop-casting $(8 \,\mu\text{L}\,\text{cm}^{-2}, 1.66 \,\text{mg}\,\text{m}\,\text{L}^{-1}, \text{acetonitrile})$ directly onto CuCrO₂ electrodes (thickness approx. 300 nm, see Figure S7 in the Supporting Information; $13.4 \,\mu g \, Zn Se \, cm^{-2}$). EDX spectra confirmed an even distribution over the electrode surface (Figure S8). UV/Vis spectra of ZnSe-modified CuCrO₂ feature the characteristic absorptions of both CuCrO₂ and ZnSe (Figure S9). Linear-sweep voltammograms and chronoamperograms of ZnSe-modified electrodes show enhanced photocurrents compared to the bare CuCrO₂ electrode, with an onset potential of approximately +0.75 V vs. RHE (Figure 3), indicating the ability of photoexcited ZnSe nanorods to inject holes ($E_{VB,ZnSe} = 1.6 \text{ V vs. RHE}$) into the valence band of CuCrO₂ ($E_{VB,CuCrO_2} = 1.0$ V vs. RHE).^[38] Controlled potential photoelectrolysis (CPPE; Supporting Information, Figure S10) confirmed that the highly reducing CB_{ZnSe} electrons are used to reduce aqueous protons to H₂. CPPE with a CuCrO₂ | ZnSe electrode maintained at $E_{app} = 0$ V vs.

Figure 3. Linear-sweep voltammograms under chopped light illumination for CuCrO₂ (blue) and CuCrO₂ | ZnSe (black) electrodes, and chronoamperograms (inset) of the same electrodes at $E_{app} = 0$ V vs. RHE. Shading indicates dark chops. Conditions: Aq. Na₂SO₄ (0.1 m, pH 5.5), room temperature, 100 mWcm⁻², AM 1.5G, $\lambda > 400$ nm, scan rate 5 mVs⁻¹. The photocurrent density was adjusted for an electrode area of 0.25 cm².

RHE and illuminated from the front side (100 mW cm^{-2}) , AM 1.5G, $\lambda > 400$ nm) produced 35 ± 7 nmol H₂ over the course of 4 h with a Faradaic efficiency (FE) of $7 \pm 2\%$ (Table S5). Bare CuCrO₂ produced no detectable H₂, confirming the essential role of ZnSe in this system. The high dark current, as previously reported for CuCrO2,[38] and dissolved H₂ which is not sufficiently accounted for in low current-generating systems^[39] both contribute to the modest FE. Adding Ni²⁺ as a co-catalyst increases the overall H₂ production yield, corresponding well to photocatalysis results (Supporting Information, Figure S11 and Table S5). Incident photon-to-current efficiency measurements showed an increased current in the 400-440 nm region for CuCrO₂ | ZnSe electrodes compared to bare CuCrO₂, confirming the role of ZnSe NRs in this photocathode (Figure S12).

H₂-generating QD-sensitized photocathodes in the absence of a co-catalyst have shown photocurrents of -60 µA cm⁻² at 0.3 V vs. RHE with mercaptoacetic-acidmodified CdSe on NiO^[40] and $-180 \,\mu\text{A}\,\text{cm}^{-2}$ at 0.5 V vs. RHE using a phenothiazine hole-accepting ligand with CdSe on NiO.^[41] $CuCrO_2 | ZnSe$ photoelectrodes generated $-10 \,\mu\text{A}\,\text{cm}^{-2}$ at 0 V vs. RHE, comparable to the photocurrents observed with a molecular dye/catalyst assembly.^[38] The low photocurrent can be partly attributed to low light absorption, but the dominant limiting factor is likely a nonideal interface between CuCrO2 and the ZnSe NRs. This results in high charge recombination, limiting the number of electrons available for catalysis. Adding a H₂ evolution cocatalyst therefore only results in a small activity enhancement. Although this performance does not match that of the corresponding Cd-based systems yet, it does demonstrate that the ZnSe NR photocatalyst can operate in the absence of a sacrificial reagent and in a photoelectrochemical cell. We expect future improvements for the integration of ZnSe into electrodes through CuCrO₂ nanostructuring and ligand engineering to improve the CuCrO₂/ZnSe interface,^[40–42] alternative assembly methods,^[43] and the integration of molecular catalysts,^[44] especially for CO₂ reduction,^[16a] making use of the highly reducing CB of ZnSe.

In summary, we have demonstrated that ZnSe nanorods are efficient light-absorbers for solar-driven H_2 production, even without an added hydrogen-evolution co-catalyst. Their performance already approaches that of Cd-containing quantum dots without exhibiting their carcinogenicity, highlighting the potential of designing novel inorganic materials for efficient photocatalysis. We showed that the ZnSe nanorods can also be integrated into photoelectrochemical cells, which paves the way to closed-cycle solar fuel synthesis and we also envision its use in organic photoredox catalysis and photoreforming of waste and pollutants in future development.

Acknowledgements

This work was supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group (M.F.K., C.D.S., and E.R.), the EPSRC NanoDTC in Cambridge (EP/ L015978/1; E.R. and C.E.C.), an EPSRC Underpinning Multi-User Equipment Grant (EP/P030467/1), the Erasmus + program (D.W.), the Erasmus program (A.S.) and the World Premier International Research Center Initiative, MEXT, Japan (K.L.O.). We thank Dr. Jane Leung, Miss Taylor Uekert, and Dr. Nikolay Kornienko for helpful discussions, and Dr. Heather Greer for help with the TEM measurements.

Conflict of interest

The authors declare no conflict of interest.

Keywords: delafossite · hydrogen · photocatalysis · photocathode · zinc selenide

How to cite: Angew. Chem. Int. Ed. 2019, 58, 5059–5063 Angew. Chem. 2019, 131, 5113–5117

- [1] Y. Tachibana, L. Vayssieres, J. R. Durrant, *Nat. Photonics* 2012, 6, 511–518.
- [2] S. Chen, T. Takata, K. Domen, Nat. Rev. Mats. 2017, 2, 17050.
- [3] X.-B. Li, C.-H. Tung, L.-Z. Wu, Nat. Rev. Chem. 2018, 2, 160– 173.
- [4] D. W. Wakerley, K. H. Ly, N. Kornienko, K. L. Orchard, M. F. Kuehnel, E. Reisner, *Chem. Eur. J.* 2018, 24, 18385–18388.
- [5] W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, *Chem. Rev.* 2016, 116, 7159–7329.
- [6] G. A. M. Hutton, B. C. M. Martindale, E. Reisner, Chem. Soc. Rev. 2017, 46, 6111-6123.
- [7] L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, Adv. Mater. 2018, 30, 1801955.
- [8] A. Ebina, E. Fukunaga, T. Takahashi, Phys. Rev. B 1974, 10, 2495–2500.
- [9] H. Kaneko, T. Minegishi, M. Nakabayashi, N. Shibata, Y. Kuang, T. Yamada, K. Domen, Adv. Funct. Mater. 2016, 26, 4570–4577.

- [10] Y. Xu, Y. Huang, B. Zhang, Inorg. Chem. Front. 2016, 3, 591– 615.
- [11] a) Y. Kageshima, T. Minegishi, Y. Goto, H. Kaneko, K. Domen, Sustainable Energy Fuels 2018, 2, 1957–1965; b) H. Kaneko, T. Minegishi, M. Nakabayashi, N. Shibata, K. Domen, Angew. Chem. Int. Ed. 2016, 55, 15329–15333.
- [12] a) S. Xiong, B. Xi, C. Wang, G. Xi, X. Liu, Y. Qian, Chem. Eur. J. 2007, 13, 7926-7932; b) L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang, H. Zhao, J. Phys. Chem. C 2009, 113, 5434-5443; c) T. Yao, Q. Zhao, Z. Qiao, F. Peng, H. Wang, H. Yu, C. Chi, J. Yang, Chem. Eur. J. 2011, 17, 8663-8670; d) P. Chen, T.-Y. Xiao, H.-H. Li, J.-J. Yang, Z. Wang, H.-B. Yao, S.-H. Yu, ACS Nano 2012, 6, 712-719; e) S. Cho, J.-W. Jang, J. S. Lee, K.-H. Lee, Nanoscale 2012, 4, 2066-2071; f) B. Liu, L. Tian, Y. Wang, ACS Appl. Mater. Interfaces 2013, 5, 8414-8422; g) W. Chen, N. Zhang, M. Y. Zhang, X. T. Zhang, H. Gao, J. Wen, CrystEngComm 2014, 16, 1201-1206; h) M. B. Tabar, S. M. Elahi, M. Ghoranneviss, R. Yousefi, CrystEngComm 2018, 20, 4590-4599; i) X. Huang, Y. Zou, J. Hao, J. Jiang, CrystEngComm 2018, 20, 4020-4024; j) R. Yousefi, H. R. Azimi, M. R. Mahmoudian, W. J. Basirun, Appl. Surf. Sci. 2018, 435, 886-893.
- [13] D. Chen, H. Zhang, Y. Li, Y. Pang, Z. Yin, H. Sun, L.-C. Zhang, S. Wang, M. Saunders, E. Barker, G. Jia, *Adv. Mater.* **2018**, *30*, 1803351.
- [14] a) A. F. Shaikh, S. S. Arbuj, M. S. Tamboli, S. D. Naik, S. B. Rane, B. B. Kale, *ChemistrySelect* **2017**, *2*, 9174–9180; b) B. Qiu, Q. Zhu, M. Xing, J. Zhang, *Chem. Commun.* **2017**, *53*, 897–900.
- [15] P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, A. Pron, *Mater. Chem. Phys.* 2004, 84, 10–13.
- [16] a) M. F. Kuehnel, C. D. Sahm, G. Neri, J. R. Lee, K. L. Orchard, A. J. Cowan, E. Reisner, *Chem. Sci.* **2018**, *9*, 2501–2509; b) E. L. Rosen, R. Buonsanti, A. Llordes, A. M. Sawvel, D. J. Milliron, B. A. Helms, *Angew. Chem. Int. Ed.* **2012**, *51*, 684–689.
- [17] P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli, A. Agostiano, *Chem. Mater.* 2005, 17, 1296–1306.
- [18] C.-Y. Yeh, S.-H. Wei, A. Zunger, *Phys. Rev. B* **1994**, *50*, 2715–2718.
- [19] D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T. E. Rosser, E. Reisner, *Nat. Energy* **2017**, *2*, 17021.
- [20] C. M. Chang, K. L. Orchard, B. C. M. Martindale, E. Reisner, J. Mater. Chem. A 2016, 4, 2856–2862.
- [21] a) M. Guttentag, A. Rodenberg, R. Kopelent, B. Probst, C. Buchwalder, M. Brandstätter, P. Hamm, R. Alberto, *Eur. J. Inorg. Chem.* 2012, 59–64; b) B. C. M. Martindale, E. Joliat, C. Bachmann, R. Alberto, E. Reisner, *Angew. Chem. Int. Ed.* 2016, 55, 9402–9406.
- [22] T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, *Nat. Mater.* 2014, 13, 1013–1018.
- [23] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, J. Mater. Chem. A 2018, 6, 11606-11630.
- [24] Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, *Science* 2012, 338, 1321–1324.
- [25] a) J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C.-T. Au, S.-F. Yin, *ChemSusChem* 2016, 9, 624–630; b) Z. Sun, H. Zheng, J. Li, P. Du, *Energy Environ. Sci.* 2015, 8, 2668–2676; c) H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, *J. Catal.* 2009, 266, 165–168; d) M. Gopannagari, D. P. Kumar, D. A. Reddy, S. Hong, M. I. Song, T. K. Kim, *J. Catal.* 2017, 351, 153–160; e) Z. Sun, Q. Yue, J. Li, J. Xu, H. Zheng, P. Du, *J. Mater. Chem. A* 2015, 3, 10243–10247.
- [26] Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Chem. Commun. 2013, 49, 9803–9805.
- [27] C. Li, L. Han, R. Liu, H. Li, S. Zhang, G. Zhang, J. Mater. Chem. 2012, 22, 23815–23820.

- [28] D. Jiang, Z. Sun, H. Jia, D. Lu, P. Du, J. Mater. Chem. A 2016, 4, 675–683.
- [29] H. Du, K. Liang, C.-Z. Yuan, H.-L. Guo, X. Zhou, Y.-F. Jiang, A.-W. Xu, ACS Appl. Mater. Interfaces 2016, 8, 24550–24558.
- [30] M. Sandroni, R. Gueret, K. D. Wegner, P. Reiss, J. Fortage, D. Aldakov, M.-N. Collomb, *Energy Environ. Sci.* 2018, 11, 1752– 1761.
- [31] a) Y. Wang, M. K. Bayazit, S. J. A. Moniz, Q. Ruan, C. C. Lau, N. Martsinovich, J. Tang, *Energy Environ. Sci.* 2017, 10, 1643–1651;
 b) M. Z. Rahman, P. C. Tapping, T. W. Kee, R. Smernik, N. Spooner, J. Moffatt, Y. Tang, K. Davey, S.-Z. Qiao, Adv. Funct. Mater. 2017, 27, 1702384;
 c) A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas, M. Driess, Angew. Chem. Int. Ed. 2017, 56, 1653–1657.
- [32] a) R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, *Angew. Chem. Int. Ed.* **2016**, *55*, 1792–1796; b) D. J. Woods, R. S. Sprick, C. L. Smith, A. J. Cowan, A. I. Cooper, *Adv. Energy Mater.* **2017**, *7*, 1700479.
- [33] a) S. Bi, Z.-A. Lan, S. Paasch, W. Zhang, Y. He, C. Zhang, F. Liu, D. Wu, X. Zhuang, E. Brunner, X. Wang, F. Zhang, *Adv. Funct. Mater.* **2017**, *27*, 1703146; b) S. Kuecken, A. Acharjya, L. Zhi, M. Schwarze, R. Schomäcker, A. Thomas, *Chem. Commun.* **2017**, *53*, 5854–5857.
- [34] L. Wang, R. Fernández-Terán, L. Zhang, D. L. A. Fernandes, L. Tian, H. Chen, H. Tian, *Angew. Chem. Int. Ed.* **2016**, 55, 12306– 12310.

- [35] G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 9372– 9376.
- [36] a) T. Uekert, M. F. Kuehnel, D. W. Wakerley, E. Reisner, *Energy Environ. Sci.* 2018, *11*, 2853–2857; b) M. F. Kuehnel, E. Reisner, *Angew. Chem. Int. Ed.* 2018, *57*, 3290–3296.
- [37] E. A. Gibson, Chem. Soc. Rev. 2017, 46, 6194-6209.
- [38] C. E. Creissen, J. Warnan, E. Reisner, Chem. Sci. 2018, 9, 1439– 1447.
- [39] C. D. Windle, J. Massin, M. Chavarot-Kerlidou, V. Artero, *Dalton Trans.* 2018, 47, 10509–10516.
- [40] B. Liu, X.-B. Li, Y.-J. Gao, Z.-J. Li, Q.-Y. Meng, C.-H. Tung, L.-Z. Wu, Energy Environ. Sci. 2015, 8, 1443–1449.
- [41] X.-B. Li, B. Liu, M. Wen, Y.-J. Gao, H.-L. Wu, M.-Y. Huang, Z.-J. Li, B. Chen, C.-H. Tung, L.-Z. Wu, *Adv. Sci.* 2016, *3*, 1500282.
- [42] M. Abdellah, S. Zhang, M. Wang, L. Hammarström, ACS Energy Lett. 2017, 2, 2576–2580.
- [43] H. Lv, C. Wang, G. Li, R. Burke, T. D. Krauss, Y. Gao, R. Eisenberg, Proc. Natl. Acad. Sci. USA 2017, 114, 11297–11302.
- [44] a) P. Meng, M. Wang, Y. Yang, S. Zhang, L. Sun, J. Mater. Chem. A 2015, 3, 18852–18859; b) M. F. Kuehnel, K. L. Orchard, K. E. Dalle, E. Reisner, J. Am. Chem. Soc. 2017, 139, 7217–7223.

Manuscript received: December 15, 2018 Revised manuscript received: February 2, 2019 Accepted manuscript online: February 4, 2019 Version of record online: March 6, 2019