1,340 research outputs found

    Finding Common Ground: Analyzing Thomas A. Daschle’s Senate Leadership Speeches as a Model for Bipartisanship

    Get PDF
    The 2016 U.S. presidential election highlighted the contentiousness of U.S. politics. As rhetorical scholars invested in establishing common ground in U.S. politics, we analyzed the leadership speeches of Senator Thomas A. Daschle. Daschle is worthy of study because he is the only person in U.S. history to have served as both Senate majority and minority leader. Our research question is: How did Senator Thomas A. Daschle use his leadership speeches to work across the political aisle? This study uses the method of close textual analysis to analyze 23 of Daschle’s leadership speeches. We suggest Daschle offers a model of bipartisanship. Through our rhetorical analysis, we found that Daschle used strategies of bipartisanship and polarization. We conclude with implications, limitations, and areas for future research

    Sediment and terrestrial organic carbon budgets for the offshore Ayeyarwady Delta, Myanmar: Establishing a baseline for future change

    Get PDF
    Large river deltas serve as globally important archives of terrestrial and shallow marine biogeochemical signatures and because of rapid sedimentation have the potential to impact global biogeochemical cycling. The Ayeyarwady Delta in Myanmar ranks as the world\u27s third largest river delta in terms of sediment supply; however, modern increases in regional anthropogenic impacts risk severe alteration to sediment and TerrOC loads within this major system. By investigating modern sediment and terrestrial organic carbon (TerrOC) accumulation within the offshore Ayeyarwady Delta this study estimates baseline sediment and TerrOC budgets for this understudied mega-delta. Using 210Pb geochronology of 27 sediment cores collected from the continental shelf, we estimate that 405 (+52/-47) Mt of sediment, or ~70-80% of fluvial sediment discharged from the Ayeyarwady and Thanlwin rivers (the main inputs to the delta), accumulates there annually. Sediment not retained on the shelf is likely partitioned between the Ayeyarwady floodplain, shoreline accretion, and minor deep-sea export. Estimates of TerrOC (based on Ξ΄13C mixing models) were coupled with modern sediment accumulation rates to determine an annual burial of 1.93 (+1.09/-0.15) Mt C on the shelf, with TerrOC burial fluxes being highest in the foreset beds of the subaqueous delta, coincident with the area of highest sediment accumulation rate. Based on estimates of the Ayeyarwady and Thanlwin rivers\u27 TerrOC delivery, an apparent ~100% of TerrOC input is preserved on the continental shelf. However, an across shelf trend of increasing TerrOC degradation with distance offshore is also observed, indicating that while the shelf has high apparent TerrOC sequestration, carbon remineralization is also occurring prior to deposition within the subaqueous delta. Based on these conflicting outcomes, we suggest that input of TerrOC from additional sources other than the Ayeyarwady and Thanlwin rivers roughly balance the observed carbon remineralization. Main additional sources of TerrOC include the Sittang and several smaller rivers, and the Ayeyarwady delta plain below the river gauging station. As anthropogenic development within the Ayeyarwady and Thanlwin watersheds continues to increase, these sediment and TerrOC budgets provide a baseline from which future changes within the offshore Ayeyarwady Delta can be monitored

    The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates

    Get PDF
    Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant relationships. However, both phylogenetic analyses and shared genome features identified here are consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the anthophyte hypothesis

    Parallel Loss of Plastid Introns and Their Maturase in the Genus Cuscuta

    Get PDF
    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta

    DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival

    Get PDF
    The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.Howard Hughes Medical Institute (Investigator)Dana-Farber Cancer Institute (High-Tech Research Fund)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (Intramural Research Program)American Cancer SocietyCanadian Institutes of Health Research (Fellowship)American Diabetes Association (Fellowship)W. M. Keck FoundationNational Institutes of Health (U.S.) (R01 CA103866)National Institutes of Health (U.S.) (NIH; R01 AI47389
    • …
    corecore